MHB Effie's question via email about Eigenvalues, Eigenvectors and Diagonalisation

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Effie has correctly found that the eigenvalues of $\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \end{align*}$ are $\displaystyle \begin{align*} \lambda_1 = -3 \end{align*}$ and $\displaystyle \begin{align*} \lambda_2 = 2 \end{align*}$. To find the eigenvectors we solve $\displaystyle \begin{align*} A \,\mathbf{x} = \lambda \, \mathbf{x} \end{align*}$ for each $\displaystyle \begin{align*} \lambda \end{align*}$. For $\displaystyle \begin{align*} \lambda_1 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= -3\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}6 & \phantom{-}2 \\ -3 & -1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 6 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding half of row 1 to row 2 in row 2...} \end{align*}$

So we can see that $\displaystyle \begin{align*} 6\,x + 2\,y = 0 \implies y = -3\,x \end{align*}$, so by letting $\displaystyle \begin{align*} x = t \end{align*}$ where $\displaystyle \begin{align*} t \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} t\,\left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$ will do.

For $\displaystyle \begin{align*} \lambda_2 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= 2\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}1 & \phantom{-}2 \\ -3 & -6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 1 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding three lots of row 1 to row 2 in row 2...} \end{align*}$

We can see that $\displaystyle \begin{align*} x + 2\,y = 0 \implies x = -2\,y \end{align*}$. If we let $\displaystyle \begin{align*} y = s \end{align*}$ where $\displaystyle \begin{align*} s \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} s\,\left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix}\right] \end{align*}$ will do.

So a modal matrix, whose columns are made up of the eigenvectors, is $\displaystyle \begin{align*} M = \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \end{align*}$. The spectral (diagonal) matrix has the corresponding eigenvalues on the main diagonal and 0 everywhere else, so $\displaystyle \begin{align*} D = \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \end{align*}$. We can show that $\displaystyle \begin{align*} D = M^{-1} \, A \, M \end{align*}$...

$\displaystyle \begin{align*} M^{-1} &= \frac{1}{1 \cdot 1 - \left( -2 \right) \cdot \left( -3 \right) } \, \left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ \\ M^{-1} \, A \, M &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} -3 & -4 \\ \phantom{-}9 & \phantom{-}2 \end{matrix} \right] \\ &= -\frac{1}{5} \, \left[ \begin{matrix} 15 & \phantom{-}0 \\ 0 & -10 \end{matrix} \right] \\ &= \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \\ &= D \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
Effie has correctly found that the eigenvalues of $\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \end{align*}$ are $\displaystyle \begin{align*} \lambda_1 = -3 \end{align*}$ and $\displaystyle \begin{align*} \lambda_2 = 2 \end{align*}$. To find the eigenvectors we solve $\displaystyle \begin{align*} A \,\mathbf{x} = \lambda \, \mathbf{x} \end{align*}$ for each $\displaystyle \begin{align*} \lambda \end{align*}$. For $\displaystyle \begin{align*} \lambda_1 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= -3\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}6 & \phantom{-}2 \\ -3 & -1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 6 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding half of row 1 to row 2 in row 2...} \end{align*}$

So we can see that $\displaystyle \begin{align*} 6\,x + 2\,y = 0 \implies y = -3\,x \end{align*}$, so by letting $\displaystyle \begin{align*} x = t \end{align*}$ where $\displaystyle \begin{align*} t \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} t\,\left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$ will do.

For $\displaystyle \begin{align*} \lambda_2 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= 2\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}1 & \phantom{-}2 \\ -3 & -6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 1 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding three lots of row 1 to row 2 in row 2...} \end{align*}$

We can see that $\displaystyle \begin{align*} x + 2\,y = 0 \implies x = -2\,y \end{align*}$. If we let $\displaystyle \begin{align*} y = s \end{align*}$ where $\displaystyle \begin{align*} s \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} s\,\left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix}\right] \end{align*}$ will do.

So a modal matrix, whose columns are made up of the eigenvectors, is $\displaystyle \begin{align*} M = \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \end{align*}$. The spectral (diagonal) matrix has the corresponding eigenvalues on the main diagonal and 0 everywhere else, so $\displaystyle \begin{align*} D = \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \end{align*}$. We can show that $\displaystyle \begin{align*} D = M^{-1} \, A \, M \end{align*}$...

$\displaystyle \begin{align*} M^{-1} &= \frac{1}{1 \cdot 1 - \left( -2 \right) \cdot \left( -3 \right) } \, \left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ \\ M^{-1} \, A \, M &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} -3 & -4 \\ \phantom{-}9 & \phantom{-}2 \end{matrix} \right] \\ &= -\frac{1}{5} \, \left[ \begin{matrix} 15 & \phantom{-}0 \\ 0 & -10 \end{matrix} \right] \\ &= \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \\ &= D \end{align*}$
Correct!...the learner has to first come up with what i call characteristic equation; ##(3-λ)(-4-λ)+6=0## in finding the eigenvalues...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top