MHB Effie's question via email about Eigenvalues, Eigenvectors and Diagonalisation

Click For Summary
Effie has accurately determined the eigenvalues of the matrix A, which are λ1 = -3 and λ2 = 2. The corresponding eigenvectors are found by solving the equation A * x = λ * x for each eigenvalue, resulting in eigenvectors of the forms [1, -3] and [-2, 1]. A modal matrix M is constructed from these eigenvectors, yielding M = [1, -2; -3, 1]. The diagonal matrix D, which contains the eigenvalues on its diagonal, is confirmed by the relation D = M^(-1) * A * M. The discussion emphasizes the importance of the characteristic equation in deriving the eigenvalues.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Effie has correctly found that the eigenvalues of $\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \end{align*}$ are $\displaystyle \begin{align*} \lambda_1 = -3 \end{align*}$ and $\displaystyle \begin{align*} \lambda_2 = 2 \end{align*}$. To find the eigenvectors we solve $\displaystyle \begin{align*} A \,\mathbf{x} = \lambda \, \mathbf{x} \end{align*}$ for each $\displaystyle \begin{align*} \lambda \end{align*}$. For $\displaystyle \begin{align*} \lambda_1 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= -3\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}6 & \phantom{-}2 \\ -3 & -1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 6 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding half of row 1 to row 2 in row 2...} \end{align*}$

So we can see that $\displaystyle \begin{align*} 6\,x + 2\,y = 0 \implies y = -3\,x \end{align*}$, so by letting $\displaystyle \begin{align*} x = t \end{align*}$ where $\displaystyle \begin{align*} t \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} t\,\left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$ will do.

For $\displaystyle \begin{align*} \lambda_2 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= 2\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}1 & \phantom{-}2 \\ -3 & -6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 1 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding three lots of row 1 to row 2 in row 2...} \end{align*}$

We can see that $\displaystyle \begin{align*} x + 2\,y = 0 \implies x = -2\,y \end{align*}$. If we let $\displaystyle \begin{align*} y = s \end{align*}$ where $\displaystyle \begin{align*} s \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} s\,\left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix}\right] \end{align*}$ will do.

So a modal matrix, whose columns are made up of the eigenvectors, is $\displaystyle \begin{align*} M = \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \end{align*}$. The spectral (diagonal) matrix has the corresponding eigenvalues on the main diagonal and 0 everywhere else, so $\displaystyle \begin{align*} D = \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \end{align*}$. We can show that $\displaystyle \begin{align*} D = M^{-1} \, A \, M \end{align*}$...

$\displaystyle \begin{align*} M^{-1} &= \frac{1}{1 \cdot 1 - \left( -2 \right) \cdot \left( -3 \right) } \, \left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ \\ M^{-1} \, A \, M &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} -3 & -4 \\ \phantom{-}9 & \phantom{-}2 \end{matrix} \right] \\ &= -\frac{1}{5} \, \left[ \begin{matrix} 15 & \phantom{-}0 \\ 0 & -10 \end{matrix} \right] \\ &= \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \\ &= D \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
Effie has correctly found that the eigenvalues of $\displaystyle \begin{align*} A = \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \end{align*}$ are $\displaystyle \begin{align*} \lambda_1 = -3 \end{align*}$ and $\displaystyle \begin{align*} \lambda_2 = 2 \end{align*}$. To find the eigenvectors we solve $\displaystyle \begin{align*} A \,\mathbf{x} = \lambda \, \mathbf{x} \end{align*}$ for each $\displaystyle \begin{align*} \lambda \end{align*}$. For $\displaystyle \begin{align*} \lambda_1 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= -3\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}6 & \phantom{-}2 \\ -3 & -1 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 6 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding half of row 1 to row 2 in row 2...} \end{align*}$

So we can see that $\displaystyle \begin{align*} 6\,x + 2\,y = 0 \implies y = -3\,x \end{align*}$, so by letting $\displaystyle \begin{align*} x = t \end{align*}$ where $\displaystyle \begin{align*} t \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} t\,\left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}1 \\ -3 \end{matrix} \right] \end{align*}$ will do.

For $\displaystyle \begin{align*} \lambda_2 \end{align*}$ we have

$\displaystyle \begin{align*} \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= 2\,\left[ \begin{matrix} x \\ y \end{matrix} \right] \\ \left[ \begin{matrix} \phantom{-}1 & \phantom{-}2 \\ -3 & -6 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \\ \left[ \begin{matrix} 1 & 2 \\ 0 & 0 \end{matrix} \right] \left[ \begin{matrix} x \\ y \end{matrix} \right] &= \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right] \textrm{ after adding three lots of row 1 to row 2 in row 2...} \end{align*}$

We can see that $\displaystyle \begin{align*} x + 2\,y = 0 \implies x = -2\,y \end{align*}$. If we let $\displaystyle \begin{align*} y = s \end{align*}$ where $\displaystyle \begin{align*} s \in \mathbf{R} \end{align*}$ we find that the eigenvectors are of the family $\displaystyle \begin{align*} s\,\left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix} \right] \end{align*}$. We only need one of these eigenvectors to diagonalise the matrix, so $\displaystyle \begin{align*} \left[ \begin{matrix} -2 \\ \phantom{-}1 \end{matrix}\right] \end{align*}$ will do.

So a modal matrix, whose columns are made up of the eigenvectors, is $\displaystyle \begin{align*} M = \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \end{align*}$. The spectral (diagonal) matrix has the corresponding eigenvalues on the main diagonal and 0 everywhere else, so $\displaystyle \begin{align*} D = \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \end{align*}$. We can show that $\displaystyle \begin{align*} D = M^{-1} \, A \, M \end{align*}$...

$\displaystyle \begin{align*} M^{-1} &= \frac{1}{1 \cdot 1 - \left( -2 \right) \cdot \left( -3 \right) } \, \left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \\ \\ M^{-1} \, A \, M &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}3 & \phantom{-}2 \\ -3 & -4 \end{matrix} \right] \left[ \begin{matrix} \phantom{-}1 & -2 \\ -3 & \phantom{-}1 \end{matrix} \right] \\ &= -\frac{1}{5}\,\left[ \begin{matrix} 1 & 2 \\ 3 & 1 \end{matrix} \right] \left[ \begin{matrix} -3 & -4 \\ \phantom{-}9 & \phantom{-}2 \end{matrix} \right] \\ &= -\frac{1}{5} \, \left[ \begin{matrix} 15 & \phantom{-}0 \\ 0 & -10 \end{matrix} \right] \\ &= \left[ \begin{matrix} -3 & 0 \\ \phantom{-}0 & 2 \end{matrix} \right] \\ &= D \end{align*}$
Correct!...the learner has to first come up with what i call characteristic equation; ##(3-λ)(-4-λ)+6=0## in finding the eigenvalues...
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K