MHB Effie's question via email about Implicit Differentiation

AI Thread Summary
Implicit differentiation requires the application of the chain rule, as derivatives of composite functions involve the product of the inner and outer function derivatives. Any combination of "y" functions is treated as a function of "x," necessitating the use of the chain rule. For example, when differentiating \(y^2\), the derivative is calculated as \(2y \frac{dy}{dx}\). The discussion includes specific examples demonstrating the differentiation of expressions like \(x + y^2\) and \(y^3 + 3xy^2 \frac{dy}{dx}\), illustrating the application of the chain rule and other differentiation rules. Understanding these principles is crucial for effectively performing implicit differentiation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5499

To perform implicit differentiation we must make use of the chain rule. Basically if you have a function composed in another function, its derivative is the product of the inner function's derivative and the outer function's derivative. All other rules (such as the sum rule, the product rule, the quotient rule) still apply also.

We must also realize that any combination of "y" functions are essentially a function of x, as y is a function of x. Thus any combination of y's is a composition, and thus must use the chain rule.

For example, $\displaystyle \begin{align*} y^2 \end{align*}$ is composed of an inner function, "y(x)" and an outer function "whatever the output (y) is squared". So the entire function's derivative would be the inner function's derivative, i.e. derivative of y, $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$ multipled by the outer function's derivative, i.e. derivative of $\displaystyle \begin{align*} y^2 \end{align*}$ which is 2y.

So for the first question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + y^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) + \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ &= 1 + 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

and for the second question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 + 3\,x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 \right) + 3\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^3 \right) + 3\,\left[ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) \, y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \right] \\ &= \frac{\mathrm{d}y}{\mathrm{d}x} \,\left( 3\,y^2 \right) + 3 \,\left[ 1 \, y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + x \, \frac{\mathrm{d}y}{\mathrm{d}x} \, \frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}y}{\mathrm{d}x} \, \left( 2\,y \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 6\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + 3\,x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \end{align*}$
 

Attachments

  • impdiff.jpg
    impdiff.jpg
    42.5 KB · Views: 132
Mathematics news on Phys.org
Prove It said:
https://www.physicsforums.com/attachments/5499

To perform implicit differentiation we must make use of the chain rule. Basically if you have a function composed in another function, its derivative is the product of the inner function's derivative and the outer function's derivative. All other rules (such as the sum rule, the product rule, the quotient rule) still apply also.

We must also realize that any combination of "y" functions are essentially a function of x, as y is a function of x. Thus any combination of y's is a composition, and thus must use the chain rule.

For example, $\displaystyle \begin{align*} y^2 \end{align*}$ is composed of an inner function, "y(x)" and an outer function "whatever the output (y) is squared". So the entire function's derivative would be the inner function's derivative, i.e. derivative of y, $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$ multipled by the outer function's derivative, i.e. derivative of $\displaystyle \begin{align*} y^2 \end{align*}$ which is 2y.

So for the first question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + y^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) + \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ &= 1 + 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

and for the second question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 + 3\,x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 \right) + 3\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^3 \right) + 3\,\left[ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) \, y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \right] \\ &= \frac{\mathrm{d}y}{\mathrm{d}x} \,\left( 3\,y^2 \right) + 3 \,\left[ 1 \, y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + x \, \frac{\mathrm{d}y}{\mathrm{d}x} \, \frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}y}{\mathrm{d}x} \, \left( 2\,y \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 6\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + 3\,x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \end{align*}$
Correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top