MHB Effie's question via email about Implicit Differentiation

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5499

To perform implicit differentiation we must make use of the chain rule. Basically if you have a function composed in another function, its derivative is the product of the inner function's derivative and the outer function's derivative. All other rules (such as the sum rule, the product rule, the quotient rule) still apply also.

We must also realize that any combination of "y" functions are essentially a function of x, as y is a function of x. Thus any combination of y's is a composition, and thus must use the chain rule.

For example, $\displaystyle \begin{align*} y^2 \end{align*}$ is composed of an inner function, "y(x)" and an outer function "whatever the output (y) is squared". So the entire function's derivative would be the inner function's derivative, i.e. derivative of y, $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$ multipled by the outer function's derivative, i.e. derivative of $\displaystyle \begin{align*} y^2 \end{align*}$ which is 2y.

So for the first question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + y^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) + \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ &= 1 + 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

and for the second question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 + 3\,x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 \right) + 3\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^3 \right) + 3\,\left[ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) \, y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \right] \\ &= \frac{\mathrm{d}y}{\mathrm{d}x} \,\left( 3\,y^2 \right) + 3 \,\left[ 1 \, y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + x \, \frac{\mathrm{d}y}{\mathrm{d}x} \, \frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}y}{\mathrm{d}x} \, \left( 2\,y \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 6\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + 3\,x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \end{align*}$
 

Attachments

  • impdiff.jpg
    impdiff.jpg
    42.5 KB · Views: 129
Mathematics news on Phys.org
Prove It said:
https://www.physicsforums.com/attachments/5499

To perform implicit differentiation we must make use of the chain rule. Basically if you have a function composed in another function, its derivative is the product of the inner function's derivative and the outer function's derivative. All other rules (such as the sum rule, the product rule, the quotient rule) still apply also.

We must also realize that any combination of "y" functions are essentially a function of x, as y is a function of x. Thus any combination of y's is a composition, and thus must use the chain rule.

For example, $\displaystyle \begin{align*} y^2 \end{align*}$ is composed of an inner function, "y(x)" and an outer function "whatever the output (y) is squared". So the entire function's derivative would be the inner function's derivative, i.e. derivative of y, $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$ multipled by the outer function's derivative, i.e. derivative of $\displaystyle \begin{align*} y^2 \end{align*}$ which is 2y.

So for the first question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x + y^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) + \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ &= 1 + \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ &= 1 + 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

and for the second question:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 + 3\,x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^3 \right) + 3\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \\ &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^3 \right) + 3\,\left[ \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x \right) \, y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}}{\mathrm{d}x}\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) \right] \\ &= \frac{\mathrm{d}y}{\mathrm{d}x} \,\left( 3\,y^2 \right) + 3 \,\left[ 1 \, y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + x \, \frac{\mathrm{d}y}{\mathrm{d}x} \, \frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,\frac{\mathrm{d}y}{\mathrm{d}x} \, \left( 2\,y \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,\left[ y^2 \,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \right] \\ &= 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + 6\,x\,y\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 + 3\,x\,y^2\,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} \end{align*}$
Correct.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top