mathmari
Gold Member
MHB
- 4,984
- 7
Klaas van Aarsen said:Let's not call it $\lambda$ to avoid confusion with the $\lambda$ we already have. Let's call the eigenvalue $\mu$.
So we have to show that $\psi(v)=\mu v$... (Sweating)
We have that $\phi (v)=\lambda v \Rightarrow v=\phi (v)\lambda^{-1}$. Then we get $\psi (v)=\psi \left (\phi (v)\lambda^{-1}\right )\Rightarrow \psi (v)=\lambda^{-1} \phi \left (\psi (v)\right )$.
That doesn't help us, does it? :unsure: