I have been looking at the solution to a question and I don't understand how the eigenstates are calculated. The question concerns a 3-state spin-1-system with angular momentum l=1. The 3 eigenstates of L(adsbygoogle = window.adsbygoogle || []).push({}); _{3}are given as ## \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ## , ## \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} ## , ## \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} ## which leads to the z-component of angular momentum as L_{3}= ## \hbar ## ## \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} ##. When I try to calculate the eigenvalues and eigenvectors of the L_{3}matrix using determinants I get no answer. Can anybody tell me how to get the eigenvalues and eigenvectors ? Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Eigenstates in a 3-state spin 1 system

**Physics Forums | Science Articles, Homework Help, Discussion**