- #1
ma18
- 93
- 1
Homework Statement
Look at the matrix:
A = sin t sin p s_x + sin t sin p s_y +cos t s_z
where s_i are the pauli matrices
a) Find the eigenvalues and normalized eigenvectors (are they orthogonal)?
b) Write the eigenvector of s_x with positive eigenvalue as a linear combination of the eigenvalues of A
Homework Equations
The Attempt at a Solution
I got an answer but I am not confident as to it's veracity.
The matrix A is :
(cos t , sin t cos p - i sin t sin p
sin t cos p + i sin t sin p, - cos t)
or
(cos t, sin t (e^-i p)
sin t (e^ip), - cos t)
Finding the eigenvalues
(cos t - lambda, sin t (e^i p)
sin t (e^i p), - cos t - lambda)
You get
lambda^2 - 1 = 0
So the eigenvalues are +-1
The problem is finding the eigenvectors;
For +1
(cos t - 1, sin t e^(-i p )
sin t e^i p, - cos t - 1)
Using the cofactor method you get the equations
(cos t - 1) x +(sin e^i p) y = 0
(sin t e^i p) x + (-cos t - 1) y = 0
I get
v1 = C_1 (-e^-i p tan (t/2), 1)
v2 = C_2 (-e^i p tan (t/2), 1)
Then normalizing
C_1 = 1/sqrt(e^-2 i p tan (t/2)^2 + 1)
C_2 = 1/sqrt(e^-2 i p cot (t/2)^2 + 1)
I don't know how to do b
Any help/checking would be helpful