Given a square matrix (arbitrary finite size) where two diagonal entries are 'a' and '-a', what can you derive about the eigenvalues of the matrix?(adsbygoogle = window.adsbygoogle || []).push({});

My supervisor mentioned she'd read something about it being provable that the matrix cannot be positive or negative definite. Two of the eigenvalues will certainly have opposite signs or at most be both zero. She says she read it on a book but has completely forgotten where or what the result's name was (if it has one).

Can anyone confirm this result? The square matrix is completely general except for two diagonal entries being the negative of one another. I'm not sure if they had to be successive diagonal entries. If it is true, what's the proof? If it's too long a proof or requires a bunch of lemma to build up to it from more well known results, can someone point me to a book or website which covers it?

Thanks :)

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Eigenvalues for a matrix with equal and opposite diagonal entries?

Loading...

Similar Threads for Eigenvalues matrix equal | Date |
---|---|

A Eigenvalues and matrix entries | Apr 17, 2018 |

I Eigenvalues of Circulant matrices | Oct 1, 2017 |

I Is a symmetric matrix with positive eigenvalues always real? | Jan 26, 2017 |

Linear Algebra: characteristic polynomials and trace | Nov 20, 2016 |

Finding eigenvectors of a matrix that has 2 equal eigenvalues | Nov 21, 2012 |

**Physics Forums - The Fusion of Science and Community**