Eigenvector and eigenvalue for differential operator

Click For Summary
SUMMARY

The discussion centers on finding eigenvectors and eigenvalues for the differential operator \( D: V \rightarrow V \), where \( V \) is the vector space of real-coefficient polynomials of degree at most 3. Participants concluded that \( p(x) = \frac{x^2}{2} \) is not an eigenvector since \( D(p(x)) = x \), which is not a scalar multiple of \( p(x) \). A correct approach involves expressing \( D \) as a matrix with respect to the basis \( \{x^3, x^2, x, 1\} \) and using algebraic methods to find eigenvectors and eigenvalues.

PREREQUISITES
  • Understanding of differential operators and their properties
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of polynomial functions and their degrees
  • Basic linear algebra concepts, including matrix representation
NEXT STEPS
  • Study the matrix representation of differential operators in polynomial spaces
  • Learn how to compute eigenvalues and eigenvectors for matrices
  • Explore the implications of eigenvalues in the context of differential equations
  • Investigate the relationship between polynomial degree and eigenvalue behavior
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in the application of differential operators in polynomial spaces.

kalish1
Messages
79
Reaction score
0
My friends and I have been struggling with the following problem, and don't understand how to do it. We have gotten several different answers, but none of them make sense. Can you help us?

**Problem statement:** Let $V$ be the vector space of real-coefficient polynomials of degree at most $3$. Let $D:V \rightarrow V$ be the differential operator; $D(p(x))=\frac{d}{dx}p(x)$. Give an example of an eigenvector for $D$. What is the corresponding eigenvalue?

We ended up getting that $\frac {d}{dx}p(x)=\lambda p(x)$, so that $p(x)=\frac{x^2}{2}$. Is this correct?

Thanks.
 
Physics news on Phys.org
kalish said:
My friends and I have been struggling with the following problem, and don't understand how to do it. We have gotten several different answers, but none of them make sense. Can you help us?

**Problem statement:** Let $V$ be the vector space of real-coefficient polynomials of degree at most $3$. Let $D:V \rightarrow V$ be the differential operator; $D(p(x))=\frac{d}{dx}p(x)$. Give an example of an eigenvector for $D$. What is the corresponding eigenvalue?

We ended up getting that $\frac {d}{dx}p(x)=\lambda p(x)$, so that $p(x)=\frac{x^2}{2}$. Is this correct?

Thanks.

I don't think so, since:
$$D\Big(\frac{x^2}{2}\Big) = x \ne \lambda \cdot \frac{x^2}{2}$$

Let's pick a generic polynomial in V:
$$p(x) = ax^3 + bx^2 + cx + d$$
where $a, b, c, d \in \mathbb R$.

Then we have:
$$D(p(x)) = \lambda p(x)$$
$$3ax^2 + 2bx + c = \lambda ax^3 + \lambda bx^2 + \lambda cx + \lambda d$$
Which solutions can you find for $\lambda$? And for $a, b, c, d$?
 
kalish said:
My friends and I have been struggling with the following problem, and don't understand how to do it. We have gotten several different answers, but none of them make sense. Can you help us?

**Problem statement:** Let $V$ be the vector space of real-coefficient polynomials of degree at most $3$. Let $D:V \rightarrow V$ be the differential operator; $D(p(x))=\frac{d}{dx}p(x)$. Give an example of an eigenvector for $D$. What is the corresponding eigenvalue?

We ended up getting that $\frac {d}{dx}p(x)=\lambda p(x)$, so that $p(x)=\frac{x^2}{2}$. Is this correct?
$p(x) = \frac{x^2}{2}$ is not an eigenvector, because $D(p(x)) = x$, which is not a scalar multiple of $p(x)$.

You might find it helpful to represent the operator $D$ by a matrix. Take the set $\{x^3,x^2,x,1\}$ to be a basis for $V$. Then the matrix of $D$ with respect to that basis is $\begin{bmatrix}0&0&0&0 \\ 3&0&0&0 \\ 0&2&0&0 \\ 0&0&1&0 \end{bmatrix}.$ Now use the usual algebraic method to calculate eigenvectors and eigenvalues for that matrix. Finally, you have to figure out what that tells you in terms of polynomials.

Edit. *sigh* As usual, I like Serena beat me to it. But he and I have given two different approaches to the problem, so I hope that one of them works for you.
 
I like Serena said:
I don't think so, since:
$$D\Big(\frac{x^2}{2}\Big) = x \ne \lambda \cdot \frac{x^2}{2}$$

Let's pick a generic polynomial in V:
$$p(x) = ax^3 + bx^2 + cx + d$$
where $a, b, c, d \in \mathbb R$.

Then we have:
$$D(p(x)) = \lambda p(x)$$
$$3ax^2 + 2bx + c = \lambda ax^3 + \lambda bx^2 + \lambda cx + \lambda d$$
Which solutions can you find for $\lambda$? And for $a, b, c, d$?

Hi,
This is where we got stuck, because we couldn't solve for the values without knowing if lambda, a, b, c, d are nonzero...
 
kalish said:
Hi,
This is where we got stuck, because we couldn't solve for the values without knowing if lambda, a, b, c, d are nonzero...

Consider two cases:
  1. $\lambda = 0$
  2. $\lambda \ne 0$
What can you say about a, b, c, and d in each of those cases?
Note that the coefficient of each power of x must match left and right.
 

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K