A Einbein as Lagrange Multiplier: How Does it Work?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Let ##g_{\mu \nu}(x)## be a time-independent metric. A photon following a curve ##\Gamma## has action\begin{align*}
I[x,e]= \dfrac{1}{2} \int_{\Gamma} e^{-1}(\lambda) g_{\mu \nu}(x)\dot{x}^{\mu} \dot{x}^{\nu} d\lambda
\end{align*}with ##e(\lambda)## an independent function of ##\lambda## (an einbein). The canonical momentum is ##\partial L / \partial \dot{x}^{\mu} = e^{-1}(\lambda) \dot{x}_{\mu}## which yields a conserved energy ##-E \equiv -e^{-1}(\lambda) \dot{t}## since the Lagrangian does not depend on time. The Hamiltonian is\begin{align*}
H = \dfrac{1}{2} e^{-1}(\lambda) g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu} = \dfrac{1}{2}e(\lambda)\left( - E^2 + \mathbf{p}^2 \right)
\end{align*}From this follows the mass-shell equation ##E^2 = \mathbf{p}^2##. Why is this? The einbein field ##\dfrac{1}{2}e(\lambda)## is supposedly acting as a Lagrange multiplier but my variational calculus is rusty. (The next step will be to Legendre transform the cyclic variables only to determine the Routhian).
 
Last edited:
Physics news on Phys.org
Actually I think it makes sense, that ##-E^2 + \mathbf{p}^2 \equiv F = 0## is just a standard constraint between the coordinates and the canonical momentum when re-written.
 
You can make ##e(\lambda)## a Lagrange multiplier. Then you have in addition the variation of the action wrt. ##e##, and this gives the desired constraint ##g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}## for the motion of a massless particle.
 
  • Like
Likes ergospherical
Why is this? It's per construction, so you can write down an action which also applies to massless particles and is easy to quantize. In string theory I'd call this trick "switching from Nambu-Goto to Polyakov" :P
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top