A Einbein as Lagrange Multiplier: How Does it Work?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Let ##g_{\mu \nu}(x)## be a time-independent metric. A photon following a curve ##\Gamma## has action\begin{align*}
I[x,e]= \dfrac{1}{2} \int_{\Gamma} e^{-1}(\lambda) g_{\mu \nu}(x)\dot{x}^{\mu} \dot{x}^{\nu} d\lambda
\end{align*}with ##e(\lambda)## an independent function of ##\lambda## (an einbein). The canonical momentum is ##\partial L / \partial \dot{x}^{\mu} = e^{-1}(\lambda) \dot{x}_{\mu}## which yields a conserved energy ##-E \equiv -e^{-1}(\lambda) \dot{t}## since the Lagrangian does not depend on time. The Hamiltonian is\begin{align*}
H = \dfrac{1}{2} e^{-1}(\lambda) g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu} = \dfrac{1}{2}e(\lambda)\left( - E^2 + \mathbf{p}^2 \right)
\end{align*}From this follows the mass-shell equation ##E^2 = \mathbf{p}^2##. Why is this? The einbein field ##\dfrac{1}{2}e(\lambda)## is supposedly acting as a Lagrange multiplier but my variational calculus is rusty. (The next step will be to Legendre transform the cyclic variables only to determine the Routhian).
 
Last edited:
Physics news on Phys.org
Actually I think it makes sense, that ##-E^2 + \mathbf{p}^2 \equiv F = 0## is just a standard constraint between the coordinates and the canonical momentum when re-written.
 
You can make ##e(\lambda)## a Lagrange multiplier. Then you have in addition the variation of the action wrt. ##e##, and this gives the desired constraint ##g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}## for the motion of a massless particle.
 
  • Like
Likes ergospherical
Why is this? It's per construction, so you can write down an action which also applies to massless particles and is easy to quantize. In string theory I'd call this trick "switching from Nambu-Goto to Polyakov" :P
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top