Gravitational force isn't exactly incorrect, it just depends on your point of view. From the point of view of bodies within space-time that can't "see" the curvature, there does seem to be a force attracting bodies together. This force is capable of accelerating masses and can be measured with F = ma like any other force. If you could adopt a "god's eye view" however and see space-time from the outside (somehow!), you'd be able to see that bodies are just following geodesics - the shortest possible paths they can take through space-time. General relativity doesn't
replace gravitational force, it
explains the origin of that force as curved space-time.
Besides, Newton's theory of gravitational force is a lot simpler than Einstein's. You may protest that Newton's theory of gravity is wrong, and therefore we should never teach it. But Einstein's theory of gravity is also wrong! That's because, as Isaac Asimov said, scientific theories are
not so much wrong as incomplete. (I highly recommend this essay if you're struggling with this concept!)
Scientific theories are never the whole truth - only approximations to the truth. Einstein's theory is a better approximation to the truth than Newton's, but neither theories are the absolute truth. General relativity breaks down under super-extreme conditions anyway - like the earliest moments of the Big Bang, or the centre of a black hole - and it's incompatible with quantum mechanics, so we already know that Einstein isn't the last word and a better theory of gravity is needed! When we get that theory though it won't replace curved space-time - a phenomenon we know exists - it'll just provide a deeper explanation for
why matter-energy curves space-time, and will presumably be compatible with quantum mechanics and its equations will work inside a black hole or close to the Big Bang. The equations of general relativity, and the phenomenon of curved space-time, will still of course be very useful, and when we aren't dealing with those super-extreme conditions, general relativity will still be used for other purposes.
In the same way curved space-time didn't replace the force of gravity - only provided a deeper and more satisfying explanation for
why the force exists, and provided better answers to calculations for the extreme conditions Newton's theory breaks down in (e.g. high speeds, large distances and strong gravitational fields like the Sun's gravity near the orbit of Mercury). But Newton's equation for gravitational force is still useful for most purposes, and the phenomenon of gravitational force is still a very useful concept. General relativity does provide a deeper understanding of gravity than Newton's theory, but it's still not necessary for the vast majority of purposes, up to and including sending a space probe to Neptune.
I do agree with you it'd be interesting if we introduced the concept of curved space-time earlier on in education - it's cool, and while the detailed mathematics of general relativity is horrendously complicated, the general concept of curved space isn't too difficult for secondary school aged kids to wrap their minds around! But they'd need to know what gravity is first. Newton's a necessary stepping stone along the way to Einstein. Schools have to teach gravitational force first - then later let the students find out about the curved space-time that underlies it all - and later still, maybe one of them will help create that future, all-encompassing quantum theory of gravity that will do for Einstein what Einstein did for Newton - not replace his theory or render it obsolete, but
explain why his theory works, fill in the gaps and patch up the problems, and set it in a broader and deeper physical context. Long live both Newton and Einstein!
(Electrons orbiting the nucleus inside an atom like planets orbiting a star... now
there's something that's just plain wrong and shouldn't be taught in schools!)