Elastic Collision: 1kg Object, 0.7kg Object, 0.2s Interval

Click For Summary
In an elastic collision between a 1 kg object moving at 2.0 m/s and a stationary 0.7 kg object, the conservation of momentum and energy equations are applied to find the final velocities. The calculations yield a final velocity for the 1 kg object of approximately 0.353 m/s and for the 0.7 kg object of about 2.353 m/s. The force experienced by the stationary object during the collision is calculated to be 8.24 N, resulting in an acceleration of 8.24 m/s². The solution process is confirmed to be correct, with the use of momentum conservation and the change in velocity determining the acceleration. The final answer for the acceleration of the stationary object is thus validated.
ironhawk316
Messages
5
Reaction score
0

Homework Statement



A 1 Kilogram object with speed of 2.0 m/s in the positive x direction has a head -on elastic collision with a stationary 0.70Kg object located at x=0. What acceleration does the stationary object experiences during the collision if the collision occurs over 0.2 seconds?


Homework Equations



m1v1i + m2v2i = m1v1f + m2v2f


The Attempt at a Solution



m1v1i + m2v2i = m1v1f + m2v2f
(1)(2)+(0.7)(0)=(1)(v1f)+(0.7)(v2f)
v1 +0.7 v2f = 2

plug in:

v1+0.7(2+v1)=2
V1+ 1m +0.7 v1=2
1.7=2-1.4
1.7 v1=0.6
v1=0.6/1.7 =0.353 m/s

v2=2+0.353= 2.353 m/s

m2(v2i-v2f)
=0.7(2.353 -0)
=1.6471=ft

F=1.6471/t=1.6471/0.2=8.24N

a=F/m = 8.24/1= 8.24 m/s^2 final answer

Is this correct? Where did I go wrong? Do I have the everything in the right place?
 
Last edited:
Physics news on Phys.org
Using conservation of momentum and energy find v2f. The rate of change of velocity will give you the acceleration of the stationary body.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K