Elastic potential energy - different methods, different results

AI Thread Summary
The discussion centers on the calculation of elastic potential energy and the discrepancies between two methods. The initial approach used the velocity equation, leading to a spring constant of 50,000 N/m, which was deemed incorrect. The correct method applied conservation of energy principles, yielding a spring constant of 100,000 N/m. The error was attributed to the assumption of constant acceleration and force in the first calculation. Ultimately, it was clarified that elastic potential energy is proportional to the square of the spring's elongation.
Iamconfused123
Messages
66
Reaction score
9
Homework Statement
A car of mass 1000 kg hits the spring with a speed of 10 m/s and condenses it by 1 m. If we disregard the friction, what is the resistance constant of the spring?
Relevant Equations
##E_p=\frac{kx^{2}}{2}##, ##E_k=\frac{mv^2}{2}##
Can someone please tell me where I am wrong?
I tried to solve the problem using velocity equation; ##v_{f}^2= v_{i}^{2} + 2as## and got a= 50m/s^2, F= 50 000N and therefore F=kx -> k=50 000N/m because dx=1.

But it's not correct. When I do it using conservation of energy I get 100 000N/m. Which is correct according to the solutions.
##\frac{mv^2}{2}=\frac{kx^2}{2}## -> k=100 000N/m.

Thank you.
 
Physics news on Phys.org
Iamconfused123 said:
Can someone please tell me where I am wrong?
Your first calculation is based on assumption of a constant acceleration / constant force. This assumption is incorrect.
 
  • Like
Likes PeroK and Iamconfused123
Hill said:
Your first calculation is based on assumption of a constant acceleration / constant force. This assumption is incorrect.
Thank you very much. Just figured, Ep is proportional to the square of the elongation of the spring.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top