(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Hi everyone,

I'm supposed to find an expression for the electric potential as a function of r, the radial distance inside a solid and non conducting sphere of radius R. A total charge of q is uniformly distributed throughout its volume. The annoying part is that I'm supposed to do that using a relation between the potential and [tex] \rho[/tex] , the charge density.

2. Relevant equations

The equation the problem wants me to use is:

[tex] V( \textbf{r} ) = \frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho ( \textbf{r} )}{r} d \tau ' [/tex]

[tex]r[/tex] being the distance between source & field (observation) point.

I already have obtained a result using a different method (integrating the electric field) and got:

This is also what I found on different sources so I'm pretty sure the result is correct.

3. The attempt at a solution

Yet I can't set up my integration is such a way so as to retrieve this result.

Using the law of cosines on the following figure:

I have: [tex] r^{2} = r'^{2} + z^{2} - 2 r' z cos ( \theta )[/tex]

Using spherical coordinates, I make the integral range from 0 to 2pi and 0 to pi for phi and theta.

For [tex]r'[/tex] I am more doubtful. Indeed, when we integrate with respect to the two angles first, we obtain an expression that involves the square root of the following difference: [tex](r' - z)^{2}[/tex].

Thus depending on where the observation point is on the sphere, the positive or negative root is to be taken. So I would guess I could split the integration into two parts, from R (the radius of the sphere) to r, and then from r to 0. Since [tex]\rho[/tex] is zero everywhere outside the sphere, there is no need to integrate from infinity, where the potential is assumed to go to zero.

Yet I do not get the expected result, and this using different integration limits. I am assuming I am doing something wrong initially, and if someone has any suggestion I would be very grateful for that.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Electric Potential inside insulating solid sphere.

**Physics Forums | Science Articles, Homework Help, Discussion**