Electromagnetic field equations of motion

  • Thread starter smallgirl
  • Start date
  • #1
80
0
1. I'm not quite sure how the laplacian acts on this integral



2. [tex]\frac{\delta S}{\delta A_{\mu}}=\int\frac{\delta}{\delta A_{\mu}}(\frac{1}{4}F_{\rho\sigma}\frac{\triangle}{M^{2}}F^{\rho\sigma})[/tex]



3. I know I have to split the integral into three integrals for x y and z, but I'm not sure if
a) I should write out F in full,
b) If the laplacian only acts on the second F or both, and if so how for each instance

I have got this anyways [tex]=\int\frac{\delta}{\delta A_{\mu}}\frac{1}{4M^{2}}(\partial_{\rho}A_{\sigma}-\partial_{\sigma}A_{\rho})\frac{\partial^{2}}{\partial x^{2}}(\partial^{\rho}A^{\sigma}-\partial^{\sigma}A^{\rho})+\int\frac{\delta}{\delta A_{\mu}}\frac{1}{4M^{2}}(\partial_{\rho}A_{\sigma}-\partial_{\sigma}A_{\rho})\frac{\partial^{2}}{\partial y^{2}}(\partial^{\rho}A^{\sigma}-\partial^{\sigma}A^{\rho})+\int\frac{\delta}{\delta A_{\mu}}\frac{1}{4M^{2}}(\partial_{\rho}A_{\sigma}-\partial_{\sigma}A_{\rho})\frac{\partial^{2}}{\partial z^{2}}(\partial^{\rho}A^{\sigma}-\partial^{\sigma}A^{\rho})[/tex]
 
Last edited:

Answers and Replies

Related Threads on Electromagnetic field equations of motion

Replies
0
Views
986
  • Last Post
Replies
4
Views
1K
Replies
4
Views
2K
  • Last Post
Replies
1
Views
867
Replies
0
Views
1K
  • Last Post
Replies
12
Views
3K
Replies
1
Views
628
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
2K
Top