Maxwell's equations in Lagrangian classical field theory

  • #1
1,344
33

Homework Statement



Given the Maxwell Lagrangian ##\mathcal{L} = -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) + \frac{1}{2} (\partial_{\mu}A^{\mu})^{2}##,

show that

(a) ##\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{\nu})} = - \partial^{\mu}A^{\nu}+(\partial_{\rho}A^{\rho})\eta^{\mu\nu}## and hence obtain the equations of motion ##\partial_{\mu}F^{\mu\nu}=0##.

(b) we may rewrite the Maxwell Lagrangian (up to an integration by parts) in the compact form ##\mathcal{L} = - \frac{1}{4} F_{\mu\nu}F^{\mu\nu}##.

Homework Equations



The Attempt at a Solution



(a) ##\mathcal{L} = -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) + \frac{1}{2} (\partial_{\mu}A^{\mu})(\partial_{\mu}A^{\mu})##

##= -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial_{\rho}A_{\sigma})(\eta^{\rho\mu}\eta^{\sigma\nu}) + \frac{1}{2} (\partial_{\mu}A_{\rho})(\partial_{\mu}A_{\sigma})(\eta^{\rho\mu}\eta^{\sigma\mu})##

Am I on the right track? Do I now differentiate each of the terms using the product rule?
 

Answers and Replies

  • #2
1,344
33
(a) Let me redo this part of the question.

The Lagrangian ##\mathcal{L}## is given by ##\mathcal{L} = -\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}##.

Now,

##\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big(-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})\Big)##

##=\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big(-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}(\partial_{\mu}A_{\nu})(\partial_{\alpha}A_{\beta})\Big)##

##=-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big((\partial_{\mu}A_{\nu})(\partial_{\alpha}A_{\beta})\Big)##

##=-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}({\eta^{\rho}}_{\mu}{\eta^{\sigma}}_{\nu}\partial_{\alpha}A_{\beta}+{\eta^{\rho}}_{\alpha}{\eta^{\sigma}}_{\beta}\partial_{\mu}A_{\nu})##

##=-\frac{1}{2}({\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\nu}\eta^{\nu\beta}\partial_{\alpha}A_{\beta}+{\eta^{\rho}}_{\alpha}\eta^{\alpha\mu}{\eta^{\sigma}}_{\beta}\eta^{\beta\nu}\partial_{\mu}A_{\nu})##

##=-{\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\nu}\eta^{\nu\beta}\partial_{\alpha}A_{\beta}##

##=-\eta^{\rho\alpha}\eta^{\sigma\beta}\partial_{\alpha}A_{\beta}##

##=-\partial^{\rho}A^{\sigma}##

Am I correct so far?
 
  • #3
TSny
Homework Helper
Gold Member
13,025
3,366
That looks good to me.
 
  • #4
1,344
33
Alright, then. Now,

##\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( \frac{1}{2}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu})\Big)~##

##~=~ \frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}(\partial_{\mu}A_{\alpha})(\partial_{\nu}A_{\beta})\Big)~##

##~=~ \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta} \frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( (\partial_{\mu}A_{\alpha})(\partial_{\nu}A_{\beta})\Big)~##

##~=~ \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta} \Big( {\eta^{\rho}}_{\mu}{\eta^{\sigma}}_{\alpha}(\partial_{\nu}A_{\beta})+{\eta^{\rho}}_{\nu}{\eta^{\sigma}}_{\beta}(\partial_{\mu}A_{\alpha}))\Big)~##

##~=~ \frac{1}{2} \Big( {\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\alpha}\eta^{\nu\beta}(\partial_{\nu}A_{\beta})+{\eta^{\rho}}_{\nu}\eta^{\nu\beta}{\eta^{\sigma}}_{\beta}\eta^{\mu\alpha}(\partial_{\mu}A_{\alpha}))\Big)~##

##~=~ {\eta^{\rho}}^{\alpha}{\eta^{\sigma}}_{\alpha}(\partial_{\nu}A^{\nu})##

##~=~ {\eta^{\sigma}}_{\alpha}{\eta^{\alpha}}^{\rho}(\partial_{\nu}A^{\nu})##

##~=~ {\eta^{\sigma}\rho}(\partial_{\nu}A^{\nu})##

##~=~ (\partial_{\nu}A^{\nu}){\eta^{\sigma}\rho}##.

Therefore,

##\partial_{\rho}(\partial^{\rho}A^{\sigma}+(\partial_{\nu}A^{\nu})\eta^{\rho\sigma})~=~0~##

##-\partial_{\rho}\partial^{\rho}A^{\sigma}+\partial^{\sigma}(\partial_{\nu}A^{\nu})~=~0~##

##\partial_{\rho}\partial^{\rho}A^{\sigma}-\partial^{\sigma}(\partial_{\nu}A^{\nu})~=~0~##

##\partial_{\mu}\partial^{\mu}A^{\nu}-\partial^{\nu}(\partial_{\mu}A^{\mu})~=~0~##

##\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})~=~0~##

##\partial_{\mu}F^{\mu\nu}~=~0~##.

Am I correct?
 
  • #5
TSny
Homework Helper
Gold Member
13,025
3,366
Good. (A minus sign was left out in the first equation after the "therefore", but you have it back in the rest of the derivation.)
 
  • #6
1,344
33
(b) ##\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}##

##=-\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})##

##=-\frac{1}{4}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})-(\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu})+(\partial_{\nu}A_{\mu})(\partial^{\nu}A^{\mu})]##

##=-\frac{1}{4}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu}))##

##=-\frac{1}{2}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu}\})-A^{\mu}(\partial^{\nu}\partial_{\mu}A_{\nu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu})\}-A^{\mu}(\partial_{\mu}\partial^{\nu}A_{\nu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu})\}+(\partial_{\mu}A^{\mu})(\partial^{\nu}A_{\nu})-\partial_{\mu}\{A^{\mu}(\partial^{\nu}A_{\nu})\}]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}+\partial^{\nu}[\frac{A^{\mu}}{2}(\partial_{\mu}A_{\nu})]-\partial_{\mu}[\frac{A^{\mu}}{2}(\partial^{\nu}A_{\nu})]##

The last two terms are total derivatives. Therefore, when integrating the last two terms over the entire region of Minkowski spacetime, the condition that the field ##A^{\mu}(x)## vanishes at spatial infinity and at the initial and final times ensures that the integrals of the last two terms are zero.

Therefore, the action is unchanged under the addition of the total derivatives to the Lagrangian. Therefore, the terms with total derivatives can be omitted from the Lagrangian to obtain

##\mathcal{L}=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}##

Am I correct?
 
  • #7
TSny
Homework Helper
Gold Member
13,025
3,366
Looks very good!
 

Related Threads on Maxwell's equations in Lagrangian classical field theory

Replies
3
Views
914
Replies
2
Views
981
Replies
1
Views
969
Replies
3
Views
2K
Replies
5
Views
2K
Replies
0
Views
1K
Replies
1
Views
866
  • Last Post
Replies
4
Views
4K
Replies
0
Views
394
Top