• Support PF! Buy your school textbooks, materials and every day products Here!

Maxwell's equations in Lagrangian classical field theory

  • #1
1,344
32

Homework Statement



Given the Maxwell Lagrangian ##\mathcal{L} = -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) + \frac{1}{2} (\partial_{\mu}A^{\mu})^{2}##,

show that

(a) ##\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{\nu})} = - \partial^{\mu}A^{\nu}+(\partial_{\rho}A^{\rho})\eta^{\mu\nu}## and hence obtain the equations of motion ##\partial_{\mu}F^{\mu\nu}=0##.

(b) we may rewrite the Maxwell Lagrangian (up to an integration by parts) in the compact form ##\mathcal{L} = - \frac{1}{4} F_{\mu\nu}F^{\mu\nu}##.

Homework Equations



The Attempt at a Solution



(a) ##\mathcal{L} = -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) + \frac{1}{2} (\partial_{\mu}A^{\mu})(\partial_{\mu}A^{\mu})##

##= -\frac{1}{2} (\partial_{\mu}A_{\nu})(\partial_{\rho}A_{\sigma})(\eta^{\rho\mu}\eta^{\sigma\nu}) + \frac{1}{2} (\partial_{\mu}A_{\rho})(\partial_{\mu}A_{\sigma})(\eta^{\rho\mu}\eta^{\sigma\mu})##

Am I on the right track? Do I now differentiate each of the terms using the product rule?
 

Answers and Replies

  • #2
1,344
32
(a) Let me redo this part of the question.

The Lagrangian ##\mathcal{L}## is given by ##\mathcal{L} = -\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}##.

Now,

##\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big(-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})\Big)##

##=\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big(-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}(\partial_{\mu}A_{\nu})(\partial_{\alpha}A_{\beta})\Big)##

##=-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})}\Big((\partial_{\mu}A_{\nu})(\partial_{\alpha}A_{\beta})\Big)##

##=-\frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}({\eta^{\rho}}_{\mu}{\eta^{\sigma}}_{\nu}\partial_{\alpha}A_{\beta}+{\eta^{\rho}}_{\alpha}{\eta^{\sigma}}_{\beta}\partial_{\mu}A_{\nu})##

##=-\frac{1}{2}({\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\nu}\eta^{\nu\beta}\partial_{\alpha}A_{\beta}+{\eta^{\rho}}_{\alpha}\eta^{\alpha\mu}{\eta^{\sigma}}_{\beta}\eta^{\beta\nu}\partial_{\mu}A_{\nu})##

##=-{\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\nu}\eta^{\nu\beta}\partial_{\alpha}A_{\beta}##

##=-\eta^{\rho\alpha}\eta^{\sigma\beta}\partial_{\alpha}A_{\beta}##

##=-\partial^{\rho}A^{\sigma}##

Am I correct so far?
 
  • #3
TSny
Homework Helper
Gold Member
12,408
2,841
That looks good to me.
 
  • #4
1,344
32
Alright, then. Now,

##\frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( \frac{1}{2}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu})\Big)~##

##~=~ \frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta}(\partial_{\mu}A_{\alpha})(\partial_{\nu}A_{\beta})\Big)~##

##~=~ \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta} \frac{\partial}{\partial(\partial_{\rho}A_{\sigma})} \Big( (\partial_{\mu}A_{\alpha})(\partial_{\nu}A_{\beta})\Big)~##

##~=~ \frac{1}{2}\eta^{\mu\alpha}\eta^{\nu\beta} \Big( {\eta^{\rho}}_{\mu}{\eta^{\sigma}}_{\alpha}(\partial_{\nu}A_{\beta})+{\eta^{\rho}}_{\nu}{\eta^{\sigma}}_{\beta}(\partial_{\mu}A_{\alpha}))\Big)~##

##~=~ \frac{1}{2} \Big( {\eta^{\rho}}_{\mu}\eta^{\mu\alpha}{\eta^{\sigma}}_{\alpha}\eta^{\nu\beta}(\partial_{\nu}A_{\beta})+{\eta^{\rho}}_{\nu}\eta^{\nu\beta}{\eta^{\sigma}}_{\beta}\eta^{\mu\alpha}(\partial_{\mu}A_{\alpha}))\Big)~##

##~=~ {\eta^{\rho}}^{\alpha}{\eta^{\sigma}}_{\alpha}(\partial_{\nu}A^{\nu})##

##~=~ {\eta^{\sigma}}_{\alpha}{\eta^{\alpha}}^{\rho}(\partial_{\nu}A^{\nu})##

##~=~ {\eta^{\sigma}\rho}(\partial_{\nu}A^{\nu})##

##~=~ (\partial_{\nu}A^{\nu}){\eta^{\sigma}\rho}##.

Therefore,

##\partial_{\rho}(\partial^{\rho}A^{\sigma}+(\partial_{\nu}A^{\nu})\eta^{\rho\sigma})~=~0~##

##-\partial_{\rho}\partial^{\rho}A^{\sigma}+\partial^{\sigma}(\partial_{\nu}A^{\nu})~=~0~##

##\partial_{\rho}\partial^{\rho}A^{\sigma}-\partial^{\sigma}(\partial_{\nu}A^{\nu})~=~0~##

##\partial_{\mu}\partial^{\mu}A^{\nu}-\partial^{\nu}(\partial_{\mu}A^{\mu})~=~0~##

##\partial_{\mu}(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})~=~0~##

##\partial_{\mu}F^{\mu\nu}~=~0~##.

Am I correct?
 
  • #5
TSny
Homework Helper
Gold Member
12,408
2,841
Good. (A minus sign was left out in the first equation after the "therefore", but you have it back in the rest of the derivation.)
 
  • #6
1,344
32
(b) ##\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}##

##=-\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})##

##=-\frac{1}{4}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})-(\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu})+(\partial_{\nu}A_{\mu})(\partial^{\nu}A^{\mu})]##

##=-\frac{1}{4}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu}))##

##=-\frac{1}{2}[(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})-(\partial_{\mu}A_{\nu})(\partial^{\nu}A^{\mu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu}\})-A^{\mu}(\partial^{\nu}\partial_{\mu}A_{\nu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu})\}-A^{\mu}(\partial_{\mu}\partial^{\nu}A_{\nu})]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}[\partial^{\nu}\{A^{\mu}(\partial_{\mu}A_{\nu})\}+(\partial_{\mu}A^{\mu})(\partial^{\nu}A_{\nu})-\partial_{\mu}\{A^{\mu}(\partial^{\nu}A_{\nu})\}]##

##=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}+\partial^{\nu}[\frac{A^{\mu}}{2}(\partial_{\mu}A_{\nu})]-\partial_{\mu}[\frac{A^{\mu}}{2}(\partial^{\nu}A_{\nu})]##

The last two terms are total derivatives. Therefore, when integrating the last two terms over the entire region of Minkowski spacetime, the condition that the field ##A^{\mu}(x)## vanishes at spatial infinity and at the initial and final times ensures that the integrals of the last two terms are zero.

Therefore, the action is unchanged under the addition of the total derivatives to the Lagrangian. Therefore, the terms with total derivatives can be omitted from the Lagrangian to obtain

##\mathcal{L}=-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})+\frac{1}{2}(\partial_{\mu}A^{\mu})^{2}##

Am I correct?
 
  • #7
TSny
Homework Helper
Gold Member
12,408
2,841
Looks very good!
 

Related Threads on Maxwell's equations in Lagrangian classical field theory

Replies
3
Views
794
Replies
2
Views
859
Replies
1
Views
788
Replies
3
Views
2K
Replies
5
Views
2K
Replies
0
Views
1K
Replies
1
Views
785
  • Last Post
Replies
4
Views
4K
Replies
2
Views
2K
Top