Electromagnetic radiation (EMR) threshold

AI Thread Summary
The discussion clarifies that there is no specific threshold energy or frequency for an electromagnetic field to transition from near-field to far-field. Instead, the transition depends on distance from the source, with both near-field and far-field components present at varying distances. The near-field component diminishes rapidly as one moves away from the source, becoming negligible beyond a few wavelengths. Understanding this concept is crucial for analyzing electromagnetic radiation behavior. Overall, the relationship between near-field and far-field is defined by distance rather than a fixed threshold.
Homestar1
Messages
16
Reaction score
2
What is the threshold energy (or frequency) required for an electromagnetic field to transition from a near field to become self propagating (EMR), far field? (If I'm using the right definitions to ask the question correctly). Is this constant or are there other details needed to calculate this?
 
Physics news on Phys.org
There is no threshold. Given some distance from the source, some portion of the field will be near-field and some will be far-field, with the near-field falling off extremely rapidly as distance increases. Once the distance is more than a few wavelengths, there is virtually no near-field left.
 
Ah, that makes sense! Thanks so much!
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top