I Electromagnetic radiation, photons, quantized energy levels

Click For Summary
Electromagnetic radiation and quantized energy levels are central to understanding atomic behavior in quantum physics. In the Bohr model, electrons can only absorb or emit specific amounts of energy, represented by photons, to transition between energy levels. The energy of the photon must match the energy difference between the electron's current and target orbital for the transition to occur. This principle explains the missing lines in stellar light spectrums, where absorbed photons correspond to specific energy transitions in atoms. Overall, the quantization is a characteristic of the electron's energy levels, dictating the energy of the photons involved.
asf33
Messages
1
Reaction score
1
Hello! Im a freshman in college, taking pretty basic chem classes and Ive found myself in a deep dive regarding quantum physics. Im sure this is pretty simple and easy compared to everyone else on here but I feel like I keep getting oversimplified answers that just leave me with more questions/am getting the elementary answer. Currently, we're learning about electromagnetic radiation, specifically pertaining to the atom. My professor keeps repeating energy is quantized, and we have discussed bohrs model, which I understand- an electron can only absorb or emit a specific discreet amount of energy (in the form of a photon obviously) to jump from energy level to energy level. Is it the photons energy level that is quantized or is it that of the electrons within an atom? That is when we use the equation E photon= hv, and an electron can only absorb or emit that specific number or factors of that number, is that due to the fact the photons energy is limited to that number or that the electrons quantized energy levels are the limiting factor? If this makes any sense to anyone some help or guidance would be much appreciated. Im sure Im overcomplicating it, and im very new to this/have never taken a physics class. English is not my first language either so dont judge the spelling...
 
Physics news on Phys.org
Its quantized in the Bohr model of the atom. Photons can have any frequency, there is no limitation other than what we have observed to date.

In the Bohr atom, when an elctron drops to a lower orbital, a photon is emitted with energy that corresponds to the energy lost by the electron. Later if that same photon strikes another atom then the photon may be absorbed and an electron will transition to a higher orbital only if the photon provides the exact amount of energy needed to make the transition. It can't be less energy or greater energy. It has to be exactly what is needed for that transition to occur.

This is why when you see stellar light spectrums that have lines missing those photons were absorbed by atoms along the way to your eyes. Neighboring photons with higher or lower frequencies (energies) were not absorbed and so appear in the spectrum.

http://www.columbia.edu/~vjd1/Solar Spectrum Ex.html
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...