I Electrons keeping dynamical quantum fluctuations?

Suekdccia
Messages
352
Reaction score
30
TL;DR Summary
Could electrons and interactions between electrons avoid quantum fluctuations become "static"?
I was thinking about this paper (https://arxiv.org/abs/1405.0298) where the authors argue that there wouldn't be dynamical quantum fluctuations in a De Sitter space as fluctuations would be static once all perturbative radiation escapes the horizon (in the case that the Universe has a finite dimensional Hilbert space or has no cosmological horizon like in a classical Minkowski spacetime).

They also argue that once perturbative radiation leaves the horizon then there would be only two non-perturbative processes: quantum down tunneling or up tunneling. However, up tunneling is supressed because quantum fluctuations become static and there would be no "measuremente device" to make them dynamical (the eigenstates would not decohere into separate outcomes of the wavefunction)

But in their argument the universe is static because all perturbative radiation abandons the cosmological horizon. However, there would still be electrons, and they could arrange into interacting systems like Wigner crystals. A local system of interacting electrons is not perturbative radiation, besides, the universe would become static if there was nothing that would interact within it, but if we leave a system of interacting electrons (like a Wigner crystal) then it does not become static in the first place as there is already a system of interacting things

Basically, my point is: even if all perturbative radiation exited the horizon, and protons decayed, there would still be electrons, and if there are electrons within the universe, then there would be a non-zero probability that some of them in some place begin interacting, even forming structures like a Wigner crystal, and these interactions could avoid quantum fluctuations from being static, as they can cause the decoherence of a quantum system. So there is a small caveat or exception in their model...

Does this make any sense?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top