MHB *elements and generators of U(14)

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Generators
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
elements and generators of U(14)

\begin{align*}\displaystyle
&\text{(a)the identity is } \color{red}{1} \\
&\text{(b) U(14) is the set } \color{red}{\{1,3,4,5,6,8,9,10,11,12,13\}}\\
&\text{(c) |1|}={\color{red}{1}} \text{ since }1.1 \equiv 12^1\\
&(d) |13|={\color{red}{2}}
\text{ since }(13)^1=13\ne 1,
(13)^2 \equiv _{14} ^{\quad(-1)^2}=1\\
&\text{(e) the inverse of 13 is } {\color{red}{13}}\\
&\quad\text{ Since} 13^2 = 1 \mod 14, 13 \text{is its own inverse.}\\
&\text{(f) the generator of this group is }\\
&\quad\text{The subgroup generated by}\\
&\quad{\color{red}{<3>}}=\{3^k| k \in \Bbb{Z}\} = \{3,9,13,11,5,1\}\\
&\quad{\color{red}{<5>}}=\{5^k| k \in \Bbb{Z}\} = \{5,11 13,9,3\}\\
&(g) Abelian/non-Abelian? \\
&\quad\text{Abelian group of order } \color{red}{6}\\
&\text{(h) U(14) has subgroups.}\\
&\quad\textit{<11>}=\{11^k|k\in \Bbb{Z}\} = \{ 11, 9, 1 \} 6 \ne U(14)
\end{align*}

hopefully

(d) (h) was guesstimates? others maybe
 
Physics news on Phys.org
Hi karush,

Here are a few comments on what you've written:

(b) Your set for $U(14)$ needs revision. Try examining it again and seeing what needs to be changed.

(f) The subgroup generated by 5 needs revision as well. When looking at a subgroup generated by an element, one big hint that something is not quite right is when the identity is not present in the subgroup.

(g) You're correct that $U(14)$ has order 6, which conflicts with part (b) because you have 11 elements listed.

(h) It's not quite clear what you meant when you say $U(14)$ has subgroups, because every group always has at least "two" subgroups - namely the group itself and the subgroup consisting only of the identity. Note: "two" could be one in the trivial case that the group consists only of the identity.

I hope this helps get things going in the right direction.
 
mahalo
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top