MHB Emad's question via email about Inverse Laplace Transform

Click For Summary
The discussion focuses on finding the inverse Laplace transform of the function 12s/(s^4 + 324). The denominator can be expressed in a suitable form for applying known inverse Laplace transforms, leading to the identification of parameters where ω = 3 and a = 3. The inverse transform is calculated as (2/3)sin(3t)sinh(3t). An alternative method involves factoring the denominator as (s^2 + 6s + 18)(s^2 - 6s + 18) and using partial fractions to simplify the expression further.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
I have a question in Laplace transforms and I wonder if you can help me out. What's the inverse Laplace of $\displaystyle \begin{align*} \frac{12\,s}{s^4 + 324} \end{align*}$?

The closest Inverse Laplace Transform from my table is

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{2\,a\,s\,\omega}{\left( s^2 + \omega ^2 - a^2 \right) ^2 + 4\,a^2\,\omega ^2 } \right\} = \sin{ \left( \omega \, t \right) } \sinh{ \left( a \, t \right) } \end{align*}$

so we would hope that we can write the denominator in this format.

Notice that if we expand out the denominator, we have

$\displaystyle \begin{align*} \left( s^2 + \omega ^2 - a^2 \right) ^2 + 4\,a^2 \, \omega ^2 &= \left( s^2 + \omega ^2 - a^2 \right) \left( s^2 + \omega ^2 - a^2 \right) + 4\,a^2 \,\omega ^2 \\ &= s^4 + \omega ^2 \,s^2 - a^2\,s^2 + \omega ^2 \,s^2 + \omega ^4 - a^2\,\omega ^2 - a^2\,s^2 - a^2\,\omega ^2 + a^4 + 4\,a^2\,\omega ^2 \\ &= s^4 + \left( 2\,\omega ^2 - 2\,a^2 \right) \, s^2 + \omega ^4 + 2\,a^2\,\omega ^2 + a^4 \\ &= s^4 + \left( 2\,\omega ^2 - 2\,a^2 \right) \, s^2 + \left( \omega ^2 + a^2 \right) ^2 \end{align*}$

so equating to the denominator in our problem we have

$\displaystyle \begin{align*} s^4 + 0\,s^2 + 18^2 &\equiv s^4 + \left( 2\,\omega ^2 - 2\,a^2 \right) \,s^2 + \left( \omega ^2 + a^2 \right) ^2 \end{align*}$

We can see that $\displaystyle \begin{align*} 2\,\omega ^2 - 2\,a^2 = 0 \implies \left| \omega \right| = \left| a \right| \end{align*}$ and $\displaystyle \begin{align*} \left| \omega ^2 + a^2 \right| = 18 \end{align*}$. We can see that a possible solution is $\displaystyle \begin{align*} \omega = 3 \end{align*}$ and $\displaystyle \begin{align*} a = 3 \end{align*}$.

However our numerator needs to be $\displaystyle \begin{align*} 2\,a\,s\,\omega = 2 \cdot 3 \cdot s \cdot 3 = 18\,s \end{align*}$, so that means we will write

$\displaystyle \begin{align*} \mathcal{L}^{-1}\,\left\{ \frac{12\,s}{s^2 + 324} \right\} &= \frac{2}{3} \,\mathcal{L}^{-1} \,\left\{ \frac{18\,s}{s^2 + 324} \right\} \\ &= \frac{2}{3}\,\mathcal{L}^{-1}\,\left\{ \frac{18\,s}{\left( s^2 + 3^2 - 3^2 \right) ^2 + 4 \cdot 3^2 \cdot 3^2 } \right\} \\ &= \frac{2}{3}\sin{ \left( 3\,t \right) }\sinh{ \left( 3\,t\right) } \end{align*}$
 
Mathematics news on Phys.org
Another option is to note that
$$s^4+324=s^4+(\sqrt{18})^2,$$
and therefore http://mathhelpboards.com/math-notes-49/antiderivative-1-1-x-4-a-4104.html
$$s^4+324=(s^2+6s+18)(s^2-6s+18).$$
Now try partial fractions:
$$\frac{12s}{s^4+324}=\frac{1}{s^2-6s+18}-\frac{1}{s^2+6s+18}.$$
Complete the square, and off you go.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K