EMF induced in a wire loop rotating in a magnetic field

AI Thread Summary
The discussion centers on the derivation of the electric field induced in a wire loop rotating in a magnetic field, specifically through the integral ε = ∫(v × B) dl. Participants express confusion about the emergence of the electric field despite the magnetic field being time-independent. The role of the Lorentz force in causing electron movement and charge separation, leading to an electric field according to Gauss's law, is highlighted. An equilibrium condition is introduced, stating that the electric force equals the magnetic force, which is crucial for understanding the relationship between the electric field and the motion of charges. The conversation suggests that this equilibrium condition is valid under quasi-static conditions where changes in B and v are slow.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
1655168640334.png


To solve this problem, we need to evaluate the following integral: $$\epsilon = \int_{P}^{C} (\vec v \times \vec B) \vec dl$$

The main problem is, in fact, how do we arrive at it! I can't see why a Electric field arises at the configuration here. The magnetic field of the rotating sphere is time independent ##(\frac{ d \omega }{dt}) = 0##. The magnetic dipole at the center is also time independent.

So why do a electric field arise? Worst: Why do it arise and is equal to ##\vec v \times \vec B##?
 
Physics news on Phys.org
Have you studied motional emf?
 
kuruman said:
Have you studied motional emf?
It is more about the difficult to see that the area to calculate the flux is constant in avarage, but in infinitesimally time it is varying?
 
Herculi said:
So why do a electric field arise? Worst: Why do it arise and is equal to ##\vec v \times \vec B##?
This link might be helpful.
 
The Lorenz force ##F_L=(v\times B)q## makes the electrons move, and this creates charge separation or simply charge density ##\rho\neq 0##. This charge density creates electric field according to Gauss's law $$\nabla\cdot \mathbf{E}=\rho$$.
How do we know that the line integral of this electric field equals to $$\int_C^P \mathbf{E}\cdot d\mathbf{l}=\int_C^P(\mathbf{v}\times\mathbf{B})\cdot d\mathbf{l}$$.

Well we also impose the additional equilibrium condition $$F_E=F_B\Rightarrow \mathbf{E}q=-(\mathbf{v}\times\mathbf{B})q$$

I am feeling we 'll have to open some can of worms if we going to discuss why this equilibrium condition holds but anyway that is my take on this problem.

P.S In my opinion the equilibrium condition holds approximately in the quasi static approximation, that is when B and v are independent of time or vary slowly in time so that the charges move to the equilibrium position almost instantaneously.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top