Emma's question at Yahoo Answers regarding solving a trigonometric equation

Click For Summary
SUMMARY

The discussion focuses on solving the trigonometric equation $$\cos^2(x) - 8\sin(x)\cos(x) + 3 = 0$$ within the interval $$0^{\circ} \leq x \leq 360^{\circ}$$. Two methods are presented: the first utilizes double-angle identities leading to $$\sin(2x - \tan^{-1}(\frac{1}{8})) = \frac{7}{\sqrt{65}}$$, while the second method simplifies the equation through factoring, yielding solutions of $$x = \tan^{-1}(2) \approx 63.43^{\circ}$$ and $$x = \tan^{-1}(\frac{2}{3}) \approx 33.69^{\circ}$$. Both methods provide valid solutions for the specified interval.

PREREQUISITES
  • Understanding of trigonometric identities, specifically double-angle identities.
  • Familiarity with inverse trigonometric functions such as $$\tan^{-1}$$ and $$\sin^{-1}$$.
  • Knowledge of factoring quadratic equations in trigonometric contexts.
  • Ability to work within specified intervals for trigonometric solutions.
NEXT STEPS
  • Study the derivation and application of double-angle identities in trigonometry.
  • Learn how to solve trigonometric equations using factoring techniques.
  • Explore the properties and applications of inverse trigonometric functions.
  • Practice solving trigonometric equations within specified intervals for better proficiency.
USEFUL FOR

Students, educators, and anyone interested in mastering trigonometric equations and identities, particularly in the context of solving complex trigonometric problems.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

TRIG EQUATION, PLEASE HELP ME IM BEGGIN YOU!?

Solve the following trig equation: 0<=X<=360
cos^2 X -8sinXcosX +3=0

Please explain your answer thank you

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Emma,

We are given to solve:

$$\cos^2(x)-8\sin(x)\cos(x)+3=0$$ where $$0^{\circ}\le x\le360^{\circ}$$

If we use the following double-angle identities for sine and cosine:

$$\cos(2\theta)=2\cos^2(\theta)-1\,\therefore\,cos^2(\theta)=\frac{1+\cos(2\theta)}{2}$$

$$\sin(2\theta)=2\sin(\theta)\cos(\theta)$$

then the equation becomes:

$$\frac{1+\cos(2x)}{2}-4\sin(2x)+3=0$$

which we can arrange as:

$$8\sin(2x)-\cos(x)=7$$

Now, if we define (where $$k\in\mathbb{R},\,0^{\circ}<\alpha<90^{\circ}$$):

$$8=k\cos(\alpha)$$

$$1=k\sin(\alpha)$$

then we obtain by division:

$$\tan(\alpha)=\frac{1}{8}\,\therefore\,\alpha=\tan^{-1}\left(\frac{1}{8} \right)$$

and by squaring and adding:

$$8^2+1^2=65=k^2\left(cos^2(\alpha)+\sin^2(\alpha) \right)=k^2\,\therefore\,k=\sqrt{65}$$

Hence, our equation becomes:

$$\cos(\alpha)\sin(2x)-\sin(\alpha)\cos(x)=\frac{7}{k}$$

Using the angle-difference identity for sine, and substituting for $\alpha$ and $k$ we obtain:

$$\sin\left(2x-\tan^{-1}\left(\frac{1}{8} \right) \right)=\frac{7}{\sqrt{65}}$$

Because of the periodicity of the sine function, we may write, where $$k\in\mathbb{Z}$$

(1) $$\sin\left(2x-\tan^{-1}\left(\frac{1}{8} \right)+k\cdot360^{\circ} \right)=\frac{7}{\sqrt{65}}$$

Now, combining this with the identity $$\sin\left(180^{\circ}-\theta \right)=\sin(\theta)$$ we also have:

(2) $$\sin\left(\tan^{-1}\left(\frac{1}{8} \right)-2x+(2k+1)\cdot180^{\circ} \right)=\frac{7}{\sqrt{65}}$$

Taking the inverse sine of both sides of (1), we find:

$$2x-\tan^{-1}\left(\frac{1}{8} \right)+k\cdot360^{\circ}=\sin^{-1}\left(\frac{7}{\sqrt{65}} \right)$$

Solving for $x$, we find:

$$x=\frac{1}{2}\left(\sin^{-1}\left(\frac{7}{\sqrt{65}} \right)+\tan^{-1}\left(\frac{1}{8} \right) \right)-k\cdot180^{\circ}$$

Thus, for appropriate values of $k$, we find the solutions on the given interval for $x$ of:

$$k=0\implies x=\frac{1}{2}\left(\sin^{-1}\left(\frac{7}{\sqrt{65}} \right)+\tan^{-1}\left(\frac{1}{8} \right) \right) \approx33.69006752598^{\circ}$$

$$k=-1\implies x=\frac{1}{2}\left(\sin^{-1}\left(\frac{7}{\sqrt{65}} \right)+\tan^{-1}\left(\frac{1}{8} \right) \right)+180^{\circ} \approx213.69006752597983^{\circ}$$

Taking the inverse sine of both sides of (2), we find:

$$\tan^{-1}\left(\frac{1}{8} \right)-2x+(2k+1)\cdot180^{\circ}=\sin^{-1}\left(\frac{7}{\sqrt{65}} \right)$$

Solving for $x$, we find:

$$x=\frac{1}{2}\left(\tan^{-1}\left(\frac{1}{8} \right)-\sin^{-1}\left(\frac{7}{\sqrt{65}} \right) \right)+(2k+1)\cdot90^{\circ}$$

Thus, for appropriate values of $k$, we find the solutions on the given interval for $x$ of:

$$k=0\implies x=\frac{1}{2}\left(\tan^{-1}\left(\frac{1}{8} \right)-\sin^{-1}\left(\frac{7}{\sqrt{65}} \right) \right)+90^{\circ} \approx63.43494882292201^{\circ}$$

$$k=1\implies x=\frac{1}{2}\left(\tan^{-1}\left(\frac{1}{8} \right)-\sin^{-1}\left(\frac{7}{\sqrt{65}} \right) \right)+270^{\circ} \approx243.43494882292202^{\circ}$$
 
While I was busy composing the above posts, someone else at Yahoo! Answers replied with a much simpler method, which I will outline for the benefit of our members.

We are given to solve:

$$\cos^2(x)-8\sin(x)\cos(x)+3=0$$ where $$0^{\circ}\le x\le360^{\circ}$$

Using a Pythagorean identity, we may write the equation as:

$$\cos^2(x)-8\sin(x)\cos(x)+3\left(\sin^2(x)+\cos^2(x) \right)=0$$

We may arrange this as:

$$4\cos^2(x)-8\sin(x)\cos(x)+3\sin^2(x)=0$$

Factoring, we obtain:

$$\left(2\cos(x)-\sin(x) \right)\left(2\cos(x)-3\sin(x) \right)=0$$

From the first factor, we obtain the solutions (where $$k\in\mathbb{k}$$):

$$x=\tan^{-1}(2)+k\cdot180^{\circ}$$

and for appropriate values of $k$, we obtain:

$$k=0\implies x=\tan^{-1}(2)\approx63.43494882292201^{\circ}$$

$$k=1\implies x=\tan^{-1}(2)+180^{\circ}\approx243.43494882292202^{\circ}$$

From the second factor, we obtain the solutions:

$$x=\tan^{-1}\left(\frac{2}{3} \right)+k\cdot180^{\circ}$$

and for appropriate values of $k$, we obtain:

$$k=0\implies x=\tan^{-1}\left(\frac{2}{3} \right)\approx33.69006752598^{\circ}$$

$$k=1\implies x=\tan^{-1}\left(\frac{2}{3} \right)+180^{\circ}\approx213.69006752597977^{ \circ}$$

I sure wish I had realized this method first! (Tmi)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
7K