Integral of sqrt(1+x^2)/x: Help Solving w/ Trig Substitution

In summary, we have a question about finding the integral of sqrt(1+x^2)/x using trigonometric substitution. The conversation includes various steps and substitutions, such as using the Pythagorean identity and applying partial fractions, to arrive at the final answer of (1/2)ln| (2+x^2+2*sqrt(1+x^2))/x^2 | + sqrt(1+x^2) + C.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Here is the question:

Integral of sqrt(1+x^2)/x using trigonometric substitution?


Hi, I keep getting the answer wrong on this problem, and I was wondering if someone could please help me figure out how to solve it? I understand the basic concept, and I know that x=tan(θ), but I'm having trouble figuring out what trig identities to use. Thank you for your help!

I have posted a link there to this question so the OP can view my work.
 
Mathematics news on Phys.org
  • #2
Hello KTRavenclaw,

We are given to integrate:

\(\displaystyle \int\frac{\sqrt{1+x^2}}{x}\,dx\)

I agree with your choice of substitution:

\(\displaystyle x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta\)

Using the Pythagorean identity \(\displaystyle \tan^2(u)+1=\sec^2(u)\) we obtain:

\(\displaystyle \int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta\)

Using the above mentioned Pythagorean identity, we may write:

\(\displaystyle \int\csc(\theta)\left(\tan^2(\theta)+1 \right) \,d\theta=\int \sec(\theta)\tan(\theta)+\frac{1}{\sin(\theta)}\, d\theta\)

Now, using the following:

\(\displaystyle \frac{d}{du}\left(\sec(u) \right)=\sec(u)\tan(u)\)

\(\displaystyle \sin(2u)=2\sin(u)\cos(u)\)

We may write the integral as:

\(\displaystyle \int\,d\left(\sec(\theta) \right)+\frac{1}{2}\int\frac{1}{ \sin\left(\frac{\theta}{2} \right) \cos\left(\frac{\theta}{2} \right)}\)

If we multiply the second integrand by \(\displaystyle 1=\frac{\sec^2\left(\frac{\theta}{2} \right)}{\sec^2\left(\frac{\theta}{2} \right)}\) and put the constant with the numerator of the integrand, we obtain:

\(\displaystyle \int\,d\left(\sec(\theta) \right)+\int\frac{\dfrac{1}{2}\sec^2\left( \frac{\theta}{2} \right)}{\tan\left(\frac{\theta}{2} \right)}\, d\theta\)

Now, for the second integral, apply the substitution:

\(\displaystyle u=\tan\left(\frac{\theta}{2} \right)\,\therefore\,du=\frac{1}{2}\sec^2\left( \frac{\theta}{2} \right)\, d\theta\)

Thus, we now have:

\(\displaystyle \int\,d\left(\sec(\theta) \right)+\int\frac{1}{u}\,du\)

And so using the rules of integration, we obtain:

\(\displaystyle \sec(\theta)+\ln|u|+C\)

Back-substitute for $u$:

\(\displaystyle \sec(\theta)+\ln\left|\tan\left(\frac{\theta}{2} \right) \right|+C\)

Using the half-angle identity for tangent:

\(\displaystyle \tan\left(\frac{u}{2} \right)=\csc(u)-\cot(u)\) we have:

\(\displaystyle \sec(\theta)+\ln\left|\csc(\theta)-\cot(\theta) \right|+C\)

Back-substitute for $\theta$:

\(\displaystyle \sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C\)

And so we may conclude:

\(\displaystyle \int\frac{\sqrt{1+x^2}}{x}\,dx= \sqrt{1+x^2}+\ln\left|\frac{\sqrt{1+x^2}-1}{x} \right|+C\)
 
  • #3
MarkFL said:
Using the Pythagorean identity \(\displaystyle \tan^2(u)+1=\sec^2(u)\) we obtain:

\(\displaystyle \int\frac{\sec^3(\theta)}{\tan(\theta)}\, d\theta=\int\csc(\theta)\sec^2(\theta) \,d\theta\)

I'm not sure how you make this step. Is this just a simple trig identity?
 
  • #4
tmt said:
I'm not sure how you make this step. Is this just a simple trig identity?

Think of the tangent function like this:

\(\displaystyle \tan(u)=\frac{\sin(u)}{\cos(u)}=\sin(u)\sec(u)\)
 
  • #5
In my opinion a more straightforward substitution is $\displaystyle \begin{align*} x = \sinh{(t)} \implies \mathrm{d}x = \cosh{(t)}\,\mathrm{d}t \end{align*}$, giving

$\displaystyle \begin{align*} \int{ \frac{\sqrt{1 + x^2}}{x}\,\mathrm{d}x} &= \int{ \frac{\sqrt{1 + \sinh^2{(t)}}}{\sinh{(t)}}\,\cosh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\cosh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \frac{1 + \sinh^2{(t)}}{\sinh{(t)}}\,\mathrm{d}t } \\ &= \int{ \left[ \frac{1}{\sinh{(t)}} + \sinh{(t)} \right] \,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\sinh^2{(t)}}\,\mathrm{d}t } + \int{ \sinh{(t)}\,\mathrm{d}t } \\ &= \int{ \frac{\sinh{(t)}}{\cosh^2{(t)} - 1} \,\mathrm{d}t } + \cosh{(t)} + C_1 \\ &= \int{ \frac{\sinh{(t)}}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \,\mathrm{d}t } + \cosh{(t)} + C_1 \end{align*}$

You can solve that resulting integral with $\displaystyle \begin{align*} u = \cosh{(t)} \implies \mathrm{d}u = \sinh{(t)} \,\mathrm{d}t \end{align*}$ giving $\displaystyle \begin{align*} \int{\frac{1}{\left( u - 1 \right) \left( u + 1 \right) } \,\mathrm{d}u } + \cosh{(t)} + C_1 \end{align*}$.

Apply Partial Fractions

$\displaystyle \begin{align*} \frac{A}{u - 1} + \frac{B}{u + 1} &\equiv \frac{1}{ \left( u - 1 \right) \left( u + 1 \right) } \\ A\,\left( u + 1 \right) + B \,\left( u - 1 \right) &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} u = -1 \end{align*}$ to find $\displaystyle \begin{align*} -2\,A = 1 \implies A = -\frac{1}{2} \end{align*}$.

Let $\displaystyle \begin{align*} u = 1 \end{align*}$ to find $\displaystyle \begin{align*} 2\,B = 1 \implies B = \frac{1}{2} \end{align*}$. Then the integral is

$\displaystyle \begin{align*} \int{ \left[ -\frac{1}{2}\,\left( \frac{1}{u - 1} \right) + \frac{1}{2}\,\left( \frac{1}{u + 1} \right) \right] \,\mathrm{d}u } + \cosh{(t)} + C_1 &= \frac{1}{2} \int{ \left( \frac{1}{u + 1} - \frac{1}{u - 1} \right) \,\mathrm{d}u } + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \,\left( \ln{ \left| u + 1 \right| } - \ln{ \left| u - 1 \right| } \right) + C_2 + \cosh{(t)} + C_1 \\ &= \frac{1}{2} \ln{ \left| \frac{u + 1}{u - 1} \right| } + \cosh{(t)} + C \textrm{ where } C = C_2 + C_1 \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh{(t)} + 1}{\cosh{(t)} - 1 } \right| } + \sqrt{ 1 + \sinh^2{(t)} } + C \\ &= \frac{1}{2}\ln{ \left| \frac{\left[ \cosh{(t)} + 1 \right] ^2}{\left[ \cosh{(t)} - 1 \right] \left[ \cosh{(t)} + 1 \right] } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{\cosh^2{(t)} + 2\cosh{(t)} + 1}{\cosh^2{(t)} - 1 } \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{1 + \sinh^2{(t)} + 2\,\sqrt{ 1 + \sinh^2{(t)}} + 1}{\sinh^2{(t)}} \right| } + \sqrt{1 + x^2} + C \\ &= \frac{1}{2}\ln{ \left| \frac{2 + x^2 + 2\,\sqrt{1 + x^2}}{x^2} \right| } + \sqrt{1 + x^2} + C \end{align*}$
 
  • #6
[tex]\displaystyle\int \frac{\sqrt{1+x^2}}{x}\,dx[/tex]

[tex]\text{Let }\,x = \tan\theta,\; dx = \sec^2\!\theta\,d\theta[/tex]

[tex]\text{Substitute: }\;\int \frac{\sec\theta}{\tan\theta}\,\sec^2\theta\,d\theta \;=\;\int\frac{\sec^3\theta}{\tan\theta}\,d\theta \;=\;\int\frac{1}{\cos^3\theta}\,\frac{\cos\theta}{\sin\theta}\,d\theta \;=\;\int\frac{d\theta}{\sin\theta\cos^2\theta} [/tex]

. . [tex]=\;\int \frac{\sec^2\theta}{\sin\theta}\,d\theta \;=\;
\int \frac{1}{\sin\theta} (\tan^2\theta +1)\,d\theta \;=\; \int\left(\frac{\sin\theta}{\cos^2\theta} + \frac{1}{\sin\theta}\right)\,d\theta [/tex]

. . [tex]=\;\int (\sec\theta\tan\theta + \csc\theta)\,d\theta \;=\; \sec\theta + \ln|\csc\theta - \cot\theta| + C[/tex][tex]\text{Back-substitute: }\;\sqrt{1+x^2} + \ln\left|\frac{\sqrt{1+x^2} - 1}{x}\right| + C[/tex]
 

1. What is an integral?

An integral is a mathematical concept that represents the area under a curve on a graph. It is the inverse operation of differentiation and is used to find the original function when its derivative is known.

2. What is a trigonometric substitution?

A trigonometric substitution is a technique used in calculus to simplify integrals involving expressions with square roots, by substituting a trigonometric function for the variable. It is particularly useful in solving integrals with square roots of sums or differences of squares.

3. How do you use trigonometric substitution to solve an integral?

To use trigonometric substitution, you need to identify a part of the expression that resembles a trigonometric identity. Then, choose an appropriate substitution such that when you substitute it into the integral, it simplifies the expression and makes it easier to solve. After solving the integral, remember to substitute back the original variable and simplify the answer.

4. Why is it helpful to use trigonometric substitution in this integral?

The expression in this integral, sqrt(1+x^2)/x, contains a square root of a sum of squares. By using a trigonometric substitution, we can convert it into a simpler expression involving a trigonometric function, which makes it easier to solve. This technique can also be used to solve other integrals with square roots of sums or differences of squares.

5. Are there any particular trigonometric identities that are commonly used in trigonometric substitution?

Yes, there are three commonly used trigonometric identities in trigonometric substitution: sin^2(x) + cos^2(x) = 1, sec^2(x) = tan^2(x) + 1, and tan^2(x) + 1 = sec^2(x). These identities are helpful in simplifying expressions with squares or square roots of trigonometric functions.

Similar threads

  • General Math
Replies
11
Views
1K
Replies
4
Views
1K
Replies
3
Views
1K
Replies
1
Views
745
  • General Math
Replies
3
Views
717
Replies
2
Views
1K
  • Calculus
Replies
6
Views
1K
  • General Math
Replies
3
Views
3K
Back
Top