I Encircled energy for different aperture shapes (circle, triangle, square)

AI Thread Summary
Different aperture shapes, including circles, triangles, and squares, all measuring 300um in diameter, may produce varying encircled energy due to their distinct diffraction patterns. The area of the aperture is considered significant for the amount of energy transmitted, but the center of gravity (COG) of the diffraction spots shows different behaviors at the edges for each shape. The mathematics of Fresnel diffraction could provide insights, although applying it to various figures may be complex. Additionally, some telescopes have utilized different aperture shapes to achieve unique diffraction patterns that enhance resolution. Understanding these differences is crucial for optimizing optical systems.
Gifty01
Messages
11
Reaction score
0
TL;DR Summary
Encircled energy
Hi all, I have a system whereby, there are different aperture shapes which are: circle, triangle, square e.t.c. this apertures are all 300um in diameter. I will like to know if the encircled energy calculated for the different apertures after diffraction will be different due to different diffraction pattern. Thanks in advance.
 
Astronomy news on Phys.org
I think not shapes but area of aperture matters for amount of energy going through.
 
I measured the center of gravity (COG) of the different spot position at different distances on the camera sensor after diffraction. but I noticed different behaviour of the COG calculated for the spots. they behaved differently at the edges.
 
IIRC, one of the planet-finder telescopes used different aperture shapes to get variations in diffraction patterns that resolved 'below limit' separations...
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...

Similar threads

Back
Top