MHB Endomorphism Rings - Bland Example 7 - page 10

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

In Chapter 1: Basic Properties of Rings and Modules, Bland gives endomorphism rings as a basic example of a ring.

The example (Example 7) reads as follows:https://www.physicsforums.com/attachments/3572

I do not feel that I fully understand Bland's notation in this example.

Bland talks about the ring $$\text{End}_{\mathbb{Z} } (G)$$ where G is an abelian group ... ... BUT ... ... why do we have $$\mathbb{Z}$$ as a subscript in this definition? $$\mathbb{Z}$$ seems to have no relevance to this definition.

Hope someone can help ...

Peter
 
Physics news on Phys.org
Hi Peter,

Usually, the notation $$End_{R}(M)$$ denotes the endomorphism of an R-module M.

Any abelian group can be thought on as a $$\Bbb{Z}$$ module.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top