Engineered white blood cells may eliminate cancer?

  • Thread starter Thread starter Astronuc
  • Start date Start date
  • Tags Tags
    Cancer
AI Thread Summary
Engineered white blood cells, specifically macrophages, have been modified by University of Pennsylvania engineers to target and eliminate solid tumors by silencing a molecular pathway that prevents them from recognizing cancer cells as threats. Traditional treatments like surgery often leave behind cancerous cells that can mutate and spread, highlighting the need for more precise therapies. The key to this new approach lies in disrupting the interaction between the SIRPa protein on macrophages and the CD47 protein on healthy cells, allowing macrophages to identify and attack cancer cells. While biologic drugs that enhance immune recognition of tumors are emerging, challenges remain due to the complex interactions between solid tumors and the immune system. Overall, advancements in cancer therapeutics are rapidly evolving, indicating significant potential for future treatments.
Astronuc
Staff Emeritus
Science Advisor
Gold Member
Messages
22,340
Reaction score
7,138
By silencing the molecular pathway that prevents macrophages from attacking our own cells, University of Pennsylvania engineers have manipulated these white blood cells to eliminate solid tumors.
https://medicalxpress.com/news/2023-06-white-blood-cells-cancer.html
Cancers that form solid tumors such as in the breast, brain, or skin are particularly hard to treat. Surgery is typically the first line of defense for patients fighting solid tumors. But surgery may not remove all cancerous cells, and leftover cells can mutate and spread throughout the body. A more targeted and wholistic treatment could replace the blunt approach of surgery with one that eliminates cancer from the inside using our own cells.

The challenge is to find a way for our own macrophages to recognize cancer cells, i.e., discern cancer cells from healthy cells.

Macrophages, a type of white blood cell, immediately engulf and destroy—phagocytize—invaders such as bacteria, viruses, and even implants to remove them from the body. A macrophage's innate immune response teaches our bodies to remember and attack invading cells in the future. This learned immunity is essential to creating a kind of cancer vaccine.

But, a macrophage can't attack what it can't see.

"Macrophages recognize cancer cells as part of the body, not invaders," says Dooling. "To allow these white blood cells to see and attack cancer cells, we had to investigate the molecular pathway that controls cell-to-cell communication. Turning off this pathway—a checkpoint interaction between a protein called SIRPa on the macrophage and the CD47 protein found on all 'self' cells—was the key to creating this therapy."

https://www.nature.com/articles/s41551-023-01031-3 (Subscription or purchase required)
 
  • Like
Likes pinball1970, gleem, Lnewqban and 2 others
Biology news on Phys.org
Generally, our immune system does recognise abnormal cells and for cancers to develop a range of mutations have to occur, one of which must protect the abnormal cells from being recognised and destroyed. There are an increasing number of the so-called biologic drugs which specifically target the molecular messengers that help protect the cancer cells. These can be combined with techniques to improve the recognition of the malignant cells, even at the level of a specific individual's cancer. There are unfortunately, a number of issue effecting the interactions between solid tumours and the immune system, a solid tumour characteristically will have areas of hypoxia containing dead or dormant cells and many of these cells will contain a variety of mutations which may potentially protect them.

People often consider our immune system to be a benign force to protect us, unfortunately it is far from benign, it requires careful control to prevent it attacking normal tissues, many of these drugs have their effect because they remove this control. So while these drug's are generally safer than traditional chemotherapy, they are still associated with significant risks.

Causing the death of a large number of malignant cells using drugs or radiation, does in itself activate the immune system and allows the immune system to recognise tumour cells. This effect becomes more powerful when combined with various biologic drugs that block some of the control molecules. The techniques described in the article describe the development of techniques based on vaccine technology, which represents further developments in fine tuning the immune responses and making them more specific.

A number of different approaches are already available but the cost of such individual approaches limits their use and solid tumours present a particular challenge. There is a lot of money going into cancer therapeutics and in some ways the pace of developments is staggering, perhaps the so called moon-shot in cancer research is paying off.
 
  • Like
Likes Tom.G, Lnewqban, BillTre and 2 others
Deadly cattle screwworm parasite found in US patient. What to know. https://www.usatoday.com/story/news/health/2025/08/25/new-world-screwworm-human-case/85813010007/ Exclusive: U.S. confirms nation's first travel-associated human screwworm case connected to Central American outbreak https://www.reuters.com/business/environment/us-confirms-nations-first-travel-associated-human-screwworm-case-connected-2025-08-25/...
Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S. According to articles in the Los Angeles Times, "Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S.", and "Kissing bugs bring deadly disease to California". LA Times requires a subscription. Related article -...
I am reading Nicholas Wade's book A Troublesome Inheritance. Please let's not make this thread a critique about the merits or demerits of the book. This thread is my attempt to understanding the evidence that Natural Selection in the human genome was recent and regional. On Page 103 of A Troublesome Inheritance, Wade writes the following: "The regional nature of selection was first made evident in a genomewide scan undertaken by Jonathan Pritchard, a population geneticist at the...
Back
Top