I Entanglement, Mixed or Pure State?

stephen8686
Messages
42
Reaction score
5
I have a source that says when two particles are entangled, we must describe them using the density operator because it is a mixed state. But I have another source that says that the singlet state of two spins is an entangled state, but that has a wavefunction. So could someone explain what I am misunderstanding? Are all entangled states mixed states or only some?
 
Physics news on Phys.org
Would be helpful if you clarified what your sources are.
 
stephen8686 said:
when two particles are entangled, we must describe them using the density operator because it is a mixed state.
When two particles are entangled the state of either one is a mixed state that can only be described with a density operator. (in the most convenient basis the density matrix for either particle is ##diag(1/2,1/2)##, equal probability of measuring spin-up or spin down).
But I have another source that says that the singlet state of two spins is an entangled state, but that has a wavefunction.
The singlet state is the state of a single quantum system that will produce measurement results at two spatially separated detectors. It is a pure state with a wave function - but it is not the state of either particle considered in isolation.
 
  • Like
Likes vanhees71, DrChinese, Dale and 3 others
stephen8686 said:
I have a source that says when two particles are entangled, we must describe them using the density operator because it is a mixed state. But I have another source that says that the singlet state of two spins is an entangled state, but that has a wavefunction. So could someone explain what I am misunderstanding? Are all entangled states mixed states or only some?
To rephrase what @Nugatory said, the state that simultaneously describes both particles together is pure, while the state that describes any of the particles alone is mixed.
 
  • Like
Likes vanhees71, DrChinese, Dale and 3 others
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top