- #1
- 25
- 0
When we are resolving a periodic piecewise continuous function in a fouriers series of harmonic terms, as follows: f(x)= a0/2 +Σancos nΠx/L + Σ bnsin nΠx/L, period 2L
we are essentially expressing a sectionally discontinuous function (with finite no of such finite discontinuities, if at all) by a continuous function, arent we? As in the series is assuming the mean value of the the function at evry point, to define itself. Correct? So how does the equality hold, if you consider the definition rigorously? I am at a loss here :’(
we are essentially expressing a sectionally discontinuous function (with finite no of such finite discontinuities, if at all) by a continuous function, arent we? As in the series is assuming the mean value of the the function at evry point, to define itself. Correct? So how does the equality hold, if you consider the definition rigorously? I am at a loss here :’(