MHB Equation involving the inverse tangent function

Click For Summary
The discussion focuses on proving the equation $\arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}$ for all $x>0$. The user initially equates $\arctan{\dfrac{1}{x}}$ with $\arccot{x}$ and explores the relationships between these functions. They confirm that $\arctan{x} + \arccot{x} = \dfrac{\pi}{2}$ holds true for all real numbers, but encounter confusion when combining the two equations. A geometric interpretation using a right triangle illustrates that the angles $\alpha$ and $\beta$ are complementary, reinforcing the relationship between the inverse tangent and cotangent functions. The conclusion emphasizes that for $x>0$, the two functions are indeed complementary angles.
karseme
Messages
13
Reaction score
0
I need to prove that:

$ \arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}, \forall x>0$.

Now, I assumed $\arctan{\dfrac{1}{x}}=\arccot{x}$. So, I've tried to do this:

$\cot{y}=x \implies y=arccot{x} \\ \tan{y}=\dfrac{1}{\cot{y}}=\dfrac{1}{x} \implies y=\arctan{\dfrac{1}{x}} \\ \implies \arccot{x}=\arctan{\dfrac{1}{x}}$. I've tried to put in some numbers and it seems that it workes for every real number.

Also, $\tan{(\dfrac{\pi}{2}-y)}=\cot{y}=x \implies \dfrac{\pi}{2}-y=\arctan{x} \land y=\arccot{x} \\ \implies \arctan{x}+\arccot{x}=\dfrac{\pi}{2}$, which also works for every real number. But, why is it then when you plug in $\arccot{x}=\arctan{\dfrac{1}{x}}$ in the second equation, it doesn't work for every x. But, the first equation and the second equation work for every real number but their combination doesn't. I know that my approach wasn't that good anyway, but I didn't know what else to do to prove this.
 
Mathematics news on Phys.org
For $x>0$, $\arctan(x)$ and $\arctan\left(\frac1x\right)$ are complementary angles.
 
Hi karseme! ;)

Consider the following right triangle:
\begin{tikzpicture}[font=\large]
\draw[ultra thick, blue]
(0,0) node[above right,xshift=10] {$\alpha$} -- node[below] {$1$}
(4,0) -- node
{$x$}
(4,3) node[below left,yshift=-6] {$\beta$} -- cycle;
\draw[blue] (4,0) rectangle +(-0.3,0.3);
\end{tikzpicture}

From the definition of $\tan$ we have $\tan\alpha=\frac x 1$ and $\tan\beta=\frac 1 x$.
From the angle sum of a triangle we know that $\alpha + \beta=\frac\pi 2$.
Therefore $\arctan x + \arctan \frac 1x = \frac\pi 2$. :cool:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K