MHB Equation involving the inverse tangent function

AI Thread Summary
The discussion focuses on proving the equation $\arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}$ for all $x>0$. The user initially equates $\arctan{\dfrac{1}{x}}$ with $\arccot{x}$ and explores the relationships between these functions. They confirm that $\arctan{x} + \arccot{x} = \dfrac{\pi}{2}$ holds true for all real numbers, but encounter confusion when combining the two equations. A geometric interpretation using a right triangle illustrates that the angles $\alpha$ and $\beta$ are complementary, reinforcing the relationship between the inverse tangent and cotangent functions. The conclusion emphasizes that for $x>0$, the two functions are indeed complementary angles.
karseme
Messages
13
Reaction score
0
I need to prove that:

$ \arctan{\dfrac{1}{x}}=\dfrac{\pi}{2}- \arctan{x}, \forall x>0$.

Now, I assumed $\arctan{\dfrac{1}{x}}=\arccot{x}$. So, I've tried to do this:

$\cot{y}=x \implies y=arccot{x} \\ \tan{y}=\dfrac{1}{\cot{y}}=\dfrac{1}{x} \implies y=\arctan{\dfrac{1}{x}} \\ \implies \arccot{x}=\arctan{\dfrac{1}{x}}$. I've tried to put in some numbers and it seems that it workes for every real number.

Also, $\tan{(\dfrac{\pi}{2}-y)}=\cot{y}=x \implies \dfrac{\pi}{2}-y=\arctan{x} \land y=\arccot{x} \\ \implies \arctan{x}+\arccot{x}=\dfrac{\pi}{2}$, which also works for every real number. But, why is it then when you plug in $\arccot{x}=\arctan{\dfrac{1}{x}}$ in the second equation, it doesn't work for every x. But, the first equation and the second equation work for every real number but their combination doesn't. I know that my approach wasn't that good anyway, but I didn't know what else to do to prove this.
 
Mathematics news on Phys.org
For $x>0$, $\arctan(x)$ and $\arctan\left(\frac1x\right)$ are complementary angles.
 
Hi karseme! ;)

Consider the following right triangle:
\begin{tikzpicture}[font=\large]
\draw[ultra thick, blue]
(0,0) node[above right,xshift=10] {$\alpha$} -- node[below] {$1$}
(4,0) -- node
{$x$}
(4,3) node[below left,yshift=-6] {$\beta$} -- cycle;
\draw[blue] (4,0) rectangle +(-0.3,0.3);
\end{tikzpicture}

From the definition of $\tan$ we have $\tan\alpha=\frac x 1$ and $\tan\beta=\frac 1 x$.
From the angle sum of a triangle we know that $\alpha + \beta=\frac\pi 2$.
Therefore $\arctan x + \arctan \frac 1x = \frac\pi 2$. :cool:
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
2
Views
2K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Back
Top