MHB Equation of ellipse from directrix and focus

  • Thread starter Thread starter hatelove
  • Start date Start date
  • Tags Tags
    Ellipse Focus
hatelove
Messages
101
Reaction score
1
Find the equation of an ellipse with a directrix y = -2 and a focus at the origin.

I'm trying to find the polar equation first, and I learned this today but I forgot a lot of it and we're not allowed to take notes in class (professor says it helps to learn better) so I'm trying to look it up online but it's not much help because I can't find any elementary lessons on polar equations.

Anyway, I think the formula is

r = \frac{pe}{1 \pm sin\theta }

because of the position of the directrix, I know the ellipse is elongated along the y-axis. For this particular position given in the problem, I know it's a negative sign in the denominator (for the plus-minus symbol).

I know 'e' is eccentricity and to find that I need the center point but I forgot how to get it. I also need the vertex but I forgot how to find that too. But I know the lower vertex is between that given focus and directrix.

So far I have:

r = \frac{(2)e}{1 - sin\theta }

First step: how do I find the length of the major axes or a vertex?
 
Mathematics news on Phys.org
daigo said:
I'm trying to find the polar equation first, and I learned this today but I forgot a lot of it and we're not allowed to take notes in class (professor says it helps to learn better) so I'm trying to look it up online but it's not much help because I can't find any elementary lessons on polar equations.

Anyway, I think the formula is

r = \frac{pe}{1 \pm sin\theta }

because of the position of the directrix, I know the ellipse is elongated along the y-axis. For this particular position given in the problem, I know it's a negative sign in the denominator (for the plus-minus symbol).

I know 'e' is eccentricity and to find that I need the center point but I forgot how to get it. I also need the vertex but I forgot how to find that too. But I know the lower vertex is between that given focus and directrix.

So far I have:

r = \frac{(2)e}{1 - sin\theta }

First step: how do I find the length of the major axes or a vertex?

The directrix/forus definition of an ellipse is the locus of points such that the ratio of the distance from the focus to the distance from the directrx is a constant less than one.

Here the focus is the origin so the x-y co-ordinates of a general point on the ellipse is \( (r \cos(\theta), r \sin(\theta))\)m so the distance of a point on the ellipse from the focus is \(d_f=r\). The distance of the point from the directrix at \(y=-2\) is \(d_d=r\cos(\theta)+2\).

So the condition for this to be an ellipse is:

\[\frac{d_f}{d_d}=\frac{r}{r\cos(\theta)+2}=e\]

rearranging:

\[r=\frac{2e}{1-e\cos(\theta))}\]

The ends of the major axis correspond to \(\theta=0\) and \(\theta=\pi/2\) ,...

CB
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top