MHB Equation to find an unknown point on a graph

  • Thread starter Thread starter Jazoar
  • Start date Start date
  • Tags Tags
    Graph Point
Jazoar
Messages
1
Reaction score
0
Hi All,

I need help to find an equation that will give me the location of 'E' in the image below.

'A' is the starting point on a graph.

All values from 'B' to 'D' are known values.

Currently, 'B' = 50, 'C' = 20, & 'D' = 135° - but I need an equation that will find 'E' no matter what these values are.

View attachment 7931

Any help would be greatly appreciated!

- Jazoar
 

Attachments

  • Math Problem.JPG
    Math Problem.JPG
    13.8 KB · Views: 113
Mathematics news on Phys.org
Jazoar said:
Hi All,

I need help to find an equation that will give me the location of 'E' in the image below.

'A' is the starting point on a graph.

All values from 'B' to 'D' are known values.

Currently, 'B' = 50, 'C' = 20, & 'D' = 135° - but I need an equation that will find 'E' no matter what these values are.
Any help would be greatly appreciated!

- Jazoar
Hi Jazoar, and welcome to MHB!

I found your diagram difficult to follow, because the letters A, B, C, D and E are being used to describe different things. If I understand it correctly, A and E are points, B and C are distances, and D is an angle. So I shall change the notation, keeping $A$ and $E$ as points but writing the distances as $b$ and $c$, and the angle as $\delta.$

I think the easiest way to solve the problem is to use coordinate geometry, taking $A$ as the origin, and the horizontal blue line as the $x$-axis. The horizontal red line then has the equation $y=c$, and the sloping red line has equation $-y\cos\delta + x\sin\delta = b.$ Those two lines meet at the point $E$, whose coordinates are $\left(\frac{b+c\cos\delta}{\sin\delta},c\right).$

From that, you can calculate that the distance from $A$ to $E$ is $$\frac{\sqrt{b^2+c^2 + 2bc\cos\delta}}{\sin\delta},$$ and if the line $AE$ makes an angle $\theta$ with the horizontal then $\theta$ is given by $$\tan\theta = \frac{c\sin\delta}{b+c\cos\delta}.$$ In the case when $b=50$, $c=20$ and $\delta = 135^\circ$, those formulas give $AE \approx 54.5$ and $\theta \approx 21.5^\circ.$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top