MHB Equations that result in quadratics in some trigonometric function

Simon green
Messages
10
Reaction score
0
I have absolutely no idea how to tackle either of these questions

Solve the following equation for angles between 0˚ and 360˚ to 2 decimal places
4cos²θ + 5sinθ = 3
4 cot² - 6 Cosec x = -6
 
Mathematics news on Phys.org
Re: hyperbolic functions

simongreen93 said:
I have absolutely no idea how to tackle either of these questions

Solve the following equation for angles between 0˚ and 360˚ to 2 decimal places
4cos²θ + 5sinθ = 3
4 cot² - 6 Cosec x = -6
This has nothing to do with the hyperbolic functions!?

To start you off:

For the first, recall that [math]cos^2( \theta ) = 1 - sin^2( \theta )[/math], so the equation becomes:
[math]4 - 4~sin^2( \theta ) + 5~sin( \theta ) = 3[/math]

This is now a quadratic in [math]sin( \theta )[/math]

For the second start with [math]cot ( \theta ) = \frac{ cos( \theta )}{sin( \theta )}[/math] and [math]cosec( \theta ) = \frac{1}{sin( \theta )}[/math]

-Dan
 
Re: hyperbolic functions

simongreen93 said:
I have absolutely no idea how to tackle either of these questions

Solve the following equation for angles between 0˚ and 360˚ to 2 decimal places
4cos²θ + 5sinθ = 3
4 cot² - 6 Cosec x = -6

First of all, these are trigonometric functions, not hyperbolic.

Second, both are solved in the exact same way. Use the Pythagorean Identity (or some variation of it) to rewrite your equation all in terms of the same trigonometric function. Then solve the resulting quadratic equation.

So in the first for example, you will substitute $\displaystyle \begin{align*} 1 - \sin^2{(\theta )} \end{align*}$ for $\displaystyle \begin{align*} \cos^2{(\theta )} \end{align*}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top