I Equilibrium equation if the barrier allows particle exchange

AI Thread Summary
The discussion centers on the equilibrium conditions of two physical systems, A1 and A2, separated by a wall that allows particle exchange. It is established that the equilibrium condition requires the equality of the parameter zeta for both subsystems, which is derived from the microcanonical ensemble. The conversation addresses the conceptual challenge of defining volumes V1 and V2 when the wall is removed, yet it is clarified that these volumes can still be considered as partitions of the total volume. The participants agree that the equilibrium conditions, including equal temperature and chemical potential, are consistent with the microcanonical description. Overall, the dialogue emphasizes the theoretical framework for understanding particle exchange and equilibrium in thermodynamic systems.
Kashmir
Messages
466
Reaction score
74
IMG_20220321_235505.JPG


"... two physical systems [seperated by wall], A1 and A2. A1 has ##\Omega_{1}(N1,V1,E1)## possible microstates, and the macrostate of A2 is ##\Omega_{2}(N2,V2,E2)## "

"... at any time ##t##, the subsystem ##A_{1}## is equally likely to be in anyone of the ##\Omega_{1}\left(E_{1}\right)## microstates while the subsystem ##A_{2}## is equally likely to be in anyone of the ##\Omega_{2}\left(E_{2}\right)## microstates; therefore, the composite system ##A^{(0)}## is equally likely to be in anyone of the
##
\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E_{2}\right)=\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E^{(0)}-E_{1}\right)=\Omega^{(0)}\left(E^{(0)}, E_{1}\right)
##"
"... if A1 and A2 came into contact through a wall that allowed an exchange of particles as well, the conditions for equilibrium would [include] the equality of the parameter ##\zeta_{1}## of subsystem ##A_{1}## and the parameter ##\zeta_{2}## of subsystem ##A_{2}## where, by definition,
##
\zeta \equiv\left(\frac{\partial \ln \Omega(N, V, E)}{\partial N}\right)_{V, E, N=\bar{N}}
##"

• So if we've a wall that allowed an exchange of particles we have from above equation:

##
\left(\frac{\partial \ln \Omega_1(N_1, V_1, E_1)}{\partial N_1}\right)_{V_1, E_1, N=\bar{N}}
=\left(\frac{\partial \ln \Omega_2(N_2, V_2, E_2)}{\partial N_2}\right)_{V_2, E_2, N=\bar{N}}
##

However having a wall that allows particles to be exchanged means no wall at all, then ##V_1,V_2## are not well defined, but the above equation uses them?
 
Science news on Phys.org
Kashmir said:
• So if we've a wall that allowed an exchange of particles we have from above equation:

##
\left(\frac{\partial \ln \Omega_1(N_1, V_1, E_1)}{\partial N_1}\right)_{V_1, E_1, N=\bar{N}}
=\left(\frac{\partial \ln \Omega_2(N_2, V_2, E_2)}{\partial N_2}\right)_{V_2, E_2, N=\bar{N}}
##
Does that equality come from the textbook?

Kashmir said:
However having a wall that allows particles to be exchanged means no wall at all, then ##V_1,V_2## are not well defined, but the above equation uses them?
You can still conceptually consider a fixed partitioning of the full volume, even if there is no physical partition.
 
In this case of a grand-canonical ensemble the equilibrium condition is that both ##T## and ##\mu## are equal, and that's expressed above using the microcanonical description.
 
DrClaude said:
Does that equality come from the textbook?
Yes.
DrClaude said:
You can still conceptually consider a fixed partitioning of the full volume, even if there is no physical partition.
You mean ##V_1= V_0## where ##V_0## is total volume ?
 
vanhees71 said:
In this case of a grand-canonical ensemble the equilibrium condition is that both ##T## and ##\mu## are equal, and that's expressed above using the microcanonical description.
Yes this an condition of equilibrium but the way the author derives it is confusing.
 
Kashmir said:
You mean ##V_1= V_0## where ##V_0## is total volume ?
No, I mean that you can split ##V_0## into ##V_1 + V_2##, even if there is no actual physical partition.
 
DrClaude said:
No, I mean that you can split ##V_0## into ##V_1 + V_2##, even if there is no actual physical partition.
##V_1## was defined as the volume separated by a wall in which ##N_1## particles were present.

Now if we lift the wall then how will
##V_1## be defined?
 
Kashmir said:
##V_1## was defined as the volume separated by a wall in which ##N_1## particles were present.

Now if we lift the wall then how will
##V_1## be defined?
##V_1## is still the same: it is the volume that used to be constrained by the wall. If you want, you can imagine that someone drew a line across the container, and call the space on one side of the line ##V_1##, and the space on the other side ##V_2##.
 
Back
Top