The completeness properties are 1)The least upper bound property, 2)The Nested Intervals Theorem, 3)The Monotone Convergence Theorem, 4)The Bolzano Weierstrass, 5) The convergence of every Cauchy sequence.(adsbygoogle = window.adsbygoogle || []).push({});

I can show 1→2 and 1→3→4→5→1 All I need to prove is 2→3

I therefore need the proof of the Monotone Convergence Theorem using Nested intervals Theorem

The theorems: Nested Interval Theorem(NIT): If [tex]I_{n}=\left [ a_{n},b_{n} \right ][/tex] and[tex]I_{1}\supseteq I_{2}\supseteq I_{3}\supseteq...[/tex] then [tex]\bigcap_{n=1}^{\infty}I_{n}\neq \varnothing[/tex] In addition if [tex]b_{n}-a_{n}\rightarrow 0[/tex] as [tex]n \to \infty[/tex] then [tex]\bigcap_{n=1}^{\infty}I_{n}[/tex] consists of a single point.

Monotone Convergence Theorem(MCN): If [tex]a_{n}[/tex] is a monotone and bounded sequence of real numbers then [tex]a_{n}[/tex] converges.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Equivalence of Completeness Properties

**Physics Forums | Science Articles, Homework Help, Discussion**