MHB Ernesto's Question: Proving Harmonic & Arithmetic Progressions

AI Thread Summary
If b+c, a+c, and a+b are in harmonic progression, their reciprocals form an arithmetic progression. By manipulating the equations derived from these relationships, it can be shown that a², b², and c² are also in arithmetic progression. Specifically, the conditions lead to the identity 0=0, confirming the relationship. The proof involves algebraic manipulation of the terms and demonstrating the equality of differences. Thus, the assertion that a², b², and c² are in arithmetic progression holds true under the given conditions.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Prove that if b+c, a+c, a+b are in harmonic progression, then a², b² y c²...?


Prove that if b+c, a+c, a+b are in harmonic progression, then a², b² y c² are in arithmetic progression .

Explain.

Thanks.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Ernesto,

If $b+c,\,a+c,\,a+b$ are in harmonic progression, then their reciprocals are in arithmetic progression, and we may state:

(i) $$\frac{1}{a+c}=\frac{1}{b+c}+d$$

Multiply through by $$(a+c)(b+c)$$ to obtain:

$$b+c=a+c+d(a+c)(b+c)$$

Subtract $c$ from both sides and expand the product on the far right:

$$b=a+d(ab+ac+bc+c^2)$$

Distribute on the right:

$$b=a+abd+acd+bcd+c^2d$$

Subtract through by $$a+abd+acd+bcd$$:

$$b-a-abd-acd-bcd=c^2d$$

Divide through by $d$ and arrange as:

$$c^2=\frac{b-a-abd-acd-bcd}{d}$$

(ii) $$\frac{1}{a+b}=\frac{1}{b+c}+2d$$

Multiply through by $$(a+b)(b+c)$$ to obtain:

$$b+c=a+b+2d(a+b)(b+c)$$

Subtract $b$ from both sides and expand the product on the far right:

$$c=a+2d(ab+ac+b^2+bc)$$

Distribute on the right:

$$c=a+2abd+2acd+2b^2d+2bcd$$

Subtract through by $$a+2abd+2acd+2bcd$$:

$$c-a-2abd-2acd-2bcd=2b^2d$$

Divide through by $2d$ and arrange as:

$$b^2=\frac{c-a-2abd-2acd-2bcd}{2d}$$

(iii) $$\frac{1}{a+b}=\frac{1}{a+c}+d$$

Multiply through by $$(a+b)(a+c)$$ to obtain:

$$a+c=a+b+d(a+b)(a+c)$$

Subtract $a$ from both sides and expand the product on the far right:

$$c=b+d(a^2+ac+ab+bc)$$

Distribute on the right:

$$c=b+a^2d+acd+abd+bcd$$

Subtract through by $$b+acd+abd+bcd$$:

$$c-b-acd-abd-bcd=a^2d$$

Divide through by $d$ and arrange as:

$$a^2=\frac{c-b-acd-abd-bcd}{d}$$

Now in order for $a^2,\,b^2,\,c^2$ to be in arithmetic progression, we require:

$$b^2-a^2=c^2-b^2$$

Add through by $$a^2+b^2$$:

$$2b^2=a^2+c^2$$

Substitute for $a^2,\,b^2,\,c^2$ the expressions we found above:

$$2\left(\frac{c-a-2abd-2acd-2bcd}{2d} \right)=\frac{c-b-acd-abd-bcd}{d}+\frac{b-a-abd-acd-bcd}{d}$$

Distributing the 2 on the left, and the multiplying through by $d$, we find:

$$c-a-2abd-2acd-2bcd=c-b-acd-abd-bcd+b-a-abd-acd-bcd$$

Add through by $$2abd+2acd+2bcd$$:

$$c-a=c-b+b-a$$

Collect like terms:

$$c-a=c-a$$

Subtract through by $$c-a$$:

$$0=0$$

This is an identity, which proves that given $b+c,\,a+c,\,a+b$ are in harmonic progression, then $a^2,\,b^2,\,c^2$ must be in arithmetic progression.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top