MHB Ernesto's Question: Proving Harmonic & Arithmetic Progressions

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Prove that if b+c, a+c, a+b are in harmonic progression, then a², b² y c²...?


Prove that if b+c, a+c, a+b are in harmonic progression, then a², b² y c² are in arithmetic progression .

Explain.

Thanks.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Ernesto,

If $b+c,\,a+c,\,a+b$ are in harmonic progression, then their reciprocals are in arithmetic progression, and we may state:

(i) $$\frac{1}{a+c}=\frac{1}{b+c}+d$$

Multiply through by $$(a+c)(b+c)$$ to obtain:

$$b+c=a+c+d(a+c)(b+c)$$

Subtract $c$ from both sides and expand the product on the far right:

$$b=a+d(ab+ac+bc+c^2)$$

Distribute on the right:

$$b=a+abd+acd+bcd+c^2d$$

Subtract through by $$a+abd+acd+bcd$$:

$$b-a-abd-acd-bcd=c^2d$$

Divide through by $d$ and arrange as:

$$c^2=\frac{b-a-abd-acd-bcd}{d}$$

(ii) $$\frac{1}{a+b}=\frac{1}{b+c}+2d$$

Multiply through by $$(a+b)(b+c)$$ to obtain:

$$b+c=a+b+2d(a+b)(b+c)$$

Subtract $b$ from both sides and expand the product on the far right:

$$c=a+2d(ab+ac+b^2+bc)$$

Distribute on the right:

$$c=a+2abd+2acd+2b^2d+2bcd$$

Subtract through by $$a+2abd+2acd+2bcd$$:

$$c-a-2abd-2acd-2bcd=2b^2d$$

Divide through by $2d$ and arrange as:

$$b^2=\frac{c-a-2abd-2acd-2bcd}{2d}$$

(iii) $$\frac{1}{a+b}=\frac{1}{a+c}+d$$

Multiply through by $$(a+b)(a+c)$$ to obtain:

$$a+c=a+b+d(a+b)(a+c)$$

Subtract $a$ from both sides and expand the product on the far right:

$$c=b+d(a^2+ac+ab+bc)$$

Distribute on the right:

$$c=b+a^2d+acd+abd+bcd$$

Subtract through by $$b+acd+abd+bcd$$:

$$c-b-acd-abd-bcd=a^2d$$

Divide through by $d$ and arrange as:

$$a^2=\frac{c-b-acd-abd-bcd}{d}$$

Now in order for $a^2,\,b^2,\,c^2$ to be in arithmetic progression, we require:

$$b^2-a^2=c^2-b^2$$

Add through by $$a^2+b^2$$:

$$2b^2=a^2+c^2$$

Substitute for $a^2,\,b^2,\,c^2$ the expressions we found above:

$$2\left(\frac{c-a-2abd-2acd-2bcd}{2d} \right)=\frac{c-b-acd-abd-bcd}{d}+\frac{b-a-abd-acd-bcd}{d}$$

Distributing the 2 on the left, and the multiplying through by $d$, we find:

$$c-a-2abd-2acd-2bcd=c-b-acd-abd-bcd+b-a-abd-acd-bcd$$

Add through by $$2abd+2acd+2bcd$$:

$$c-a=c-b+b-a$$

Collect like terms:

$$c-a=c-a$$

Subtract through by $$c-a$$:

$$0=0$$

This is an identity, which proves that given $b+c,\,a+c,\,a+b$ are in harmonic progression, then $a^2,\,b^2,\,c^2$ must be in arithmetic progression.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top