I Error Propagation in Measurements

AI Thread Summary
The discussion centers on error propagation in measurements, particularly when calculating the area of a rectangle defined by dimensions x and y with symmetric errors ε_x and ε_y. The participants explore the implications of including a higher-order term in the error expansion, questioning whether it introduces a negative bias due to the pairing of signs. They clarify that the standard approach to error is to use relative variations, which can be combined through various methods. Three main strategies for estimating errors are discussed: evaluating extreme values, summing small relative errors, and adding relative errors in quadrature for greater accuracy. The conversation emphasizes the importance of understanding these methods for accurate measurement analysis.
erobz
Gold Member
Messages
4,445
Reaction score
1,839
I was imagining trying to construct a rectangle of area ##A = xy##

If we give a symmetric error to each dimension ##\epsilon_x, \epsilon_y##

$$ A + \Delta A = ( x \pm \epsilon_x )( y \pm \epsilon_y )$$

Expanding the RHS and dividing through by ##A##

$$ \frac{\Delta A}{ A} = \pm \frac{\epsilon_x}{x} \pm \frac{\epsilon_y}{y} (\pm)(\pm) \frac{\epsilon_x \epsilon_y}{xy}$$

The first two terms are symmetrical error, but without neglecting the third higher order term should it have a negative bias since ## \frac{2}{3}## of sign ( ##\pm##) parings result in a negative third term, and ##\frac{1}{3}## pairings result in a positive third term?

My terminology is probably improper.
 
Last edited:
Mathematics news on Phys.org
Never mind! I think I did that wrong... There are only 4 pairings. for some reason I had ##C(4,2)## in my head.
 
The standard term for the error is the relative variation (the square of the standard deviation divided by the measurement). If you have several possible error sources, add the relative variations.
 
Three options to consider:
1) Simply evaluate your function using measurements that result in the highest and lowest possible values, in this case calculate area given by the maximum probable measurements and the minimum probable measurements. The difference in these values will be roughly symmetric about the best estimate provided the uncertainties are relatively small. Since the high and low will be roughly symmetric from the best estimate you can get away with just finding either the highest or lowest for

2) What @Svein said. If the relative errors are small you can add them together to find the relative error of the product and then easily find the absolute error. It will match with method 1 when rounded sensibly using standard significant digit 'rules.'

3) Add the relative errors in quadrature (square them, add, then square root). This is likely a more accurate estimate of the uncertainty in the product provided that the uncertainties are not covariant. This method comes from the calculus of probabilities. See Taylor's An Introduction to Error Analysis for an excellent introductory text on this.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top