Undergrad Error propagation of a variable for an integral

Click For Summary
The discussion centers on calculating the error propagation for an integral dependent on two parameters, a and b, with associated uncertainties. The user has derived four integral values based on the extreme values of a and b, identifying the minimum and maximum results. To determine the overall result as c ± δc, the user is advised to compute the partial derivatives of the integral with respect to a and b, using numerical differentiation. The suggested approach involves evaluating the integral at the extreme values of a and b, approximating the uncertainties, and combining them in quadrature. This method allows for an accurate representation of the integral's uncertainty despite the lack of an analytical solution.
Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
I have an integral that depends on two parameters ##a\pm\delta a## and ##b\pm \delta b##. I am doing this integral numerically and no python function can calculate the integral with uncertainties.

So I have calculated the integral for each min, max values of a and b.
As a result I have obtained 4 values, such that;

$$(a + \delta a, b + \delta b) = 13827.450210 \pm 0.000015~~(1)$$
$$(a + \delta a, b - \delta b) = 13827.354688 \pm 0.000015~~(2)$$
$$(a - \delta a, b + \delta b) = 13912.521548 \pm 0.000010~~(3)$$
$$(a - \delta a, b - \delta b) = 13912.425467 \pm 0.000010~~(4)$$

So it is clear that ##(2)## gives the min and ##(3)## gives the max. Let us show the result of the integral as ##c \pm \delta c##. So my problem is what is ##c## and ##\delta c## here?

The integral is something like this

$$I(a,b,x) =C\int_0^b \frac{dx}{\sqrt{a(1+x)^3 + \eta(1+x)^4 + (\gamma^2 - a - \eta)}}$$

where ##\eta## and ##\gamma## are constant.

Note: You guys can also generalize it by taking ##\eta \pm \delta \eta## but it is not necessary for now.

I have to take derivatives or integrals numerically. There's no known analytical solution for the integral.

##\eta = 4.177 \times 10^{-5}##, ##a = 0.1430 \pm 0.0011##, ##b = 1089.92 \pm 0.25##, ##\gamma = 0.6736 \pm 0.0054##, ##C = 2997.92458##
 
Last edited:
Mathematics news on Phys.org
Generally, if your intergal is I(a,b) = \int_{x_0}^{x_1} F(a,b,x)\,dx, then uncertainties in a and b would lead to I(a,b)<br /> \pm\frac{\partial I}{\partial a}\delta a \pm \frac{\partial I}{\partial b}\delta b with the partial derivatives evaluated at a and b. You can evaluate these derivatives by differentiating under the integral:
<br /> \frac{\partial I}{\partial a} = \int_{x_0}^{x_1} \frac{\partial F}{\partial a}(a, b, x)\,dx etc.
 
  • Like
Likes Arman777
The integral is something like this

$$I(a,b,x) =\int_0^b \frac{dx}{\sqrt{a(1+x)^3 + \eta(1+x)^4 + (\gamma^2 - a - \eta)}}$$

where ##\eta## and ##\gamma## are constant.
 
Assuming a and b are uncorrelated: Calculate the integral at (a,b+delta_b), (a,b-delta_b) and analogous for delta_a. Then use the deviations as approximation for ##\frac{\partial I}{\partial b}\delta b## and add both uncertainties in quadrature.
 
mfb said:
Assuming a and b are uncorrelated: Calculate the integral at (a,b+delta_b), (a,b-delta_b) and analogous for delta_a. Then use the deviations as approximation for ##\frac{\partial I}{\partial b}\delta b## and add both uncertainties in quadrature.
I did not quite understand it..Can you maybe put it in a more mathematical way
 
Code:
  from numpy import sqrt
    from scipy import integrate
    import uncertainties as u
    from uncertainties.umath import *

    #Important Parameters
    C = 2997.92458  # speed of light in [km/s]
    eta = 4.177 * 10**(-5)
    a = u.ufloat(0.1430, 0.0011)
    b = u.ufloat(1089.92, 0.25)
    gama = u.ufloat(0.6736, 0.0054)

    @u.wrap
    def D_zrec_finder(gama, a, b):
        def D_zrec(z):
            return C / sqrt(a * (1+z)**3 + eta * (1+z)**4 + (gama**2 - a - eta))
        result, error = integrate.quad(D_zrec, 0, b)
        return result    print((D_zrec_finder(gama, a, b)).n)
    print((D_zrec_finder(gama, a, b)).s)

This works
 
Arman777 said:
I did not quite understand it..Can you maybe put it in a more mathematical way
$$\frac{\partial I}{\partial b}\delta b \approx \frac 1 2 (I(a,b+\delta b)-I(a,b-\delta b))$$
$$\frac{\partial I}{\partial a}\delta a \approx \frac 1 2 (I(a+\delta a,b)-I(a-\delta a,b))$$

As b is your integration border you can simplify this one: ##\frac{\partial I}{\partial b}## is simply the function value at x=b.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K