Estimates of the remainder in Taylor's theorem

Click For Summary
SUMMARY

The forum discussion focuses on using the general binomial series to estimate ##\sqrt{1.2}## up to two decimal points, specifically addressing the remainder term ##R_1## in Taylor's theorem. The remainder was calculated as ##|R_1|\leq {\frac{1}{8}} {\frac{(0.2)^2}{2}}##, but confusion arose regarding the derivation of this expression and the inclusion of the factorial in the estimates. The underlying function for the binomial series is identified as ##f(x) = (1 + x)^{1/2}##, with the maximum value of the second derivative influencing the remainder calculation. The discussion concludes with the acknowledgment of a potential typo in the textbook regarding the remainder formula.

PREREQUISITES
  • Understanding of Taylor's theorem and its remainder terms
  • Familiarity with binomial series expansions
  • Knowledge of derivatives and their applications in error estimation
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of Taylor's theorem remainder terms, focusing on the factorial component
  • Learn about binomial series expansions and their applications in approximating functions
  • Explore the concept of maximum values of derivatives for error estimation in Taylor series
  • Review common errors in mathematical textbooks and how to address them with instructors
USEFUL FOR

Students studying calculus, particularly those focusing on Taylor series and binomial expansions, as well as educators seeking to clarify common misconceptions in textbook problems.

bubblewrap
Messages
134
Reaction score
2
Here is the exercise question;
Use the general binomial series to get ##\sqrt{1.2}## up to 2 decimal points
In the solution the ##R_1## was given as
##|R_1|\leq {\frac{1}{8}} {\frac{(0.2)^2}{2}}## But it doesn't say where this came from and comparing this with the estimate of remainder given in Taylor's theorem didn't help. Another thing that was frustrating was that the solutions for the end-of-chapter exercises was somewhat different what the book said for example they didn't include the n+1 factorial in the estimates of the remainder.
Please help this is driving me crazy.
 
Physics news on Phys.org
bubblewrap said:
Here is the exercise question;
Use the general binomial series to get ##\sqrt{1.2}## up to 2 decimal points
What is f here? IOW, what is the function whose binomial series you are estimating?
bubblewrap said:
In the solution the ##R_1## was given as
##|R_1|\leq {\frac{1}{8}} {\frac{(0.2)^2}{2}}## But it doesn't say where this came from and comparing this with the estimate of remainder given in Taylor's theorem didn't help.
What does your book give for the formula of the remainder?
bubblewrap said:
Another thing that was frustrating was that the solutions for the end-of-chapter exercises was somewhat different what the book said for example they didn't include the n+1 factorial in the estimates of the remainder.
Actually, I think they did. In what you showed above, what is n? What is n + 1?
bubblewrap said:
Please help this is driving me crazy.
Please show us what you've done so far.
 
The function is ##\sqrt{1+x}##, the question doesn't give you what the function is, it was a part of the process.
The book says ##|R_n(x)|\leq {\frac{M_{n+1}}{(n+1)!}} |x|^{n+1}##
The question I posted is not the one that didn't include the factorial, the one above has an additional ##{\frac{1}{2}}## and a couple others had this as well. I did the calculation for about 6 times, there still could have been a mistake but not likely.
 
bubblewrap said:
The function is ##\sqrt{1+x}##, the question doesn't give you what the function is, it was a part of the process.
The "process" is just recognizing what the underlying function is, which in this case is f(x) = (1 + x)1/2.
bubblewrap said:
The book says ##|R_n(x)|\leq {\frac{M_{n+1}}{(n+1)!}} |x|^{n+1}##
The question I posted is not the one that didn't include the factorial, the one above has an additional ##{\frac{1}{2}}## and a couple others had this as well. I did the calculation for about 6 times, there still could have been a mistake but not likely.
For R1 (where n = 1), the error is going to have a factor of 1/2! = 1/2. Is that what you're asking about?

Also, since this is a problem involving a binomial series expansion, it might be helpful to write the first few terms of the expansion of (1 + x)1/2.
 
No that's not what I'm asking about, if you do the calculation you'll see that it's different from the value here.
The max is 1/4 and you divide it by 2! and multiply the whole thing again by 0.2 squared.
 
OK, now I see what you are saying, and I agree with you. Here f(x) = (1 + x)1/2, so f'(x) = (1/2)(1 + x)-1/2, and f''(x) = (-1/4)(1 + x)-3/2. The maximum value of |f''(x)| occurs when x = 0, so |f''(x)| <= 1/4. This means that |R1| <= (1/4) * (1/2!) * (.2)2, same as what you're saying.

Unless I'm missing something here, it looks like there's a typo in your book.
 
Yeah looks like it. Thanks for the help :) really needed it
 
It wouldn't hurt to ask your instructor about it.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K