Anybody have any idea about it.
Basically, you have 2 frames who share the same origin, but axes are oriented differently. You want to describe the position and orientation of the 2nd frame with respect to the first.
Let the 1st frame have axis X, Y, Z
Let 2nd frame have axis x, y, z
To describe frame 2 in terms or frame 1, you start with both frames very fully coincident at the beginning (i.e. even in orientation).
Then
- you rotate frame 2 by t1 about X - Rx(t1)
- you rotate frame 2 by t2 about Y - Ry(t2)
- you rotate frame 2 by t3 about Z - Rz(t2)
So new orientation of frame 2 is given by
Rz(t3) * Ry(t2) * Rx(t1)
(Obviously, you pre-multiply the 1st matrix by the 2nd. And the premultiply the result with the 3rd matrix)
2nd way of describing it is by Euler angles - i.e. you rotate the 2nd frame about one of it's own axis (x or y or z), instead of (X, Y or Z)
- rotate frame 2 by t3 about x - (y becomes y' & z becomes z')
- rotate frame 2 by t2 about y' - (x becomes x' & z becomes z'')
- rotate frame 2 by t1 about z" - (x' becomes x'' & y becomes y")
Now this transform is described again by
Rz(t3) * Ry(t2) * Rx(t1)
I want to know how is this 2nd transform derived?
I know how the first one is derived because I know how to find the rotation matrix for rotating a point about about a fixed axis. And I know that if you are working with column vectors (for the point), you premultiply the 1st rotation matrix by the 2nd rotation matrix.
However, I am not able to grok, how you write the transformation matrices for the 2nd case.
Basically, this is used in Industrial Robot Kinematics. Should I not be posting this in the math sub forum - is some other sub-forum the right place for this question?