Euler-Lagrange equation: pulley system

Click For Summary

Homework Help Overview

The discussion revolves around a pulley system involving two masses, where the original poster attempts to apply the Euler-Lagrange equation to derive the acceleration of one mass based on the relationship between their positions. The context includes concepts from classical mechanics, specifically Lagrangian mechanics.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants explore the relationship between the positions of the two masses, questioning the validity of the equation ##y_{A} + y_{B} = c##. They discuss the implications of one mass moving down as the other moves up and seek clarification on how to express the total length of the string in terms of the variables involved.

Discussion Status

There is an ongoing exploration of the relationship between the variables and the setup of the problem. Some participants express confusion about the initial assumptions and seek guidance on how to correctly relate the lengths of the string sections to the positions of the masses.

Contextual Notes

Participants note the challenge of expressing the total length of the string in terms of the relevant variables and discuss the constraints posed by the physical setup of the pulley system.

bookworm031
Messages
3
Reaction score
0
Homework Statement
Determine, using Euler-Lagrange's equation, the acceleration for B when the weights are moving vertically.
Relevant Equations
##\frac{d}{dt}\bigg(\frac{\partial L}{\partial \dot{y}}\bigg) = \frac{\partial L}{\partial y}##, ##L = T - V##
atwood.png


##m_{A} = 3 kg##
##m_{B} = 2 kg##

##y_{A} + y_{B} = c \Leftrightarrow y_{A} = c - y_{B}##, where c is a constant.
##\Rightarrow \dot{y_{A}} = -\dot{y_{B}}##

The Lagrangian:
$$L = T - V$$
##T =\frac{1}{2}m_{A}\dot{y_{B}}^{2} + \frac{1}{2}m_{B}\dot{y_{B}}^{2}##
##V = m_{A}g(c - y_{B}) + m_{B}gy_{B}##
##\Leftrightarrow L = \frac{1}{2}m_{A}\dot{y_{B}}^{2} + \frac{1}{2}m_{B}\dot{y_{B}}^{2} - (m_{A}g(c - y_{B}) + m_{B}gy_{B})##

Applying Euler-Lagrange's equation:

##\frac{d}{dt}\bigg(\frac{\partial L}{\partial \dot{y}}\bigg) = \ddot{y_{B}}(m_{B} + m_{A})##
##\frac{\partial L}{\partial y} = g(m_{A} - m_{B})##

Solving for ##\ddot{y_{B}}##:
##\ddot{y_{B}} = \frac{g(m_{A} - m_{B})}{(m_{B} + m_{A})} = 1.9604 \frac{m}{s^{2}}##

The answer is supposed to be ##1.78 \frac{m}{s^{2}}##. What am I doing wrong? I'm completely lost.

Thanks!
 
Last edited:
Physics news on Phys.org
bookworm031 said:
##y_{A} + y_{B} = c ##, where c is a constant.
Sure?
 
haruspex said:
Sure?
No. However, the rationale was that, since one weight moves down as the other moves up, and vice versa, the difference should always be a constant. Do you think this is wrong? If so, what's the relationship between ##y_{A}## and ##y_{B}##?

Edit: Now that I think about it, ##y_{A} + y_{B} = c## doesn't make much sense, though I'm still not sure how to set up a relationship.
 
Last edited:
bookworm031 said:
No. However, the rationale was that, since one weight moves down as the other moves up, and vice versa, the difference should always be a constant. Do you think this is wrong? If so, what's the relationship between ##y_{A}## and ##y_{B}##?

Edit: Now that I think about it, ##y_{A} + y_{B} = c## doesn't make much sense, though I'm still not sure how to set up a relationship.
Express the total length of the string in terms of the three straight parts. Don't worry about the semicircular arcs since those are constant.
 
  • Like
Likes   Reactions: Lnewqban and PhDeezNutz
haruspex said:
Express the total length of the string in terms of the three straight parts. Don't worry about the semicircular arcs since those are constant.
I don't know why I find this so difficult, I feel very stupid right now. I should express the total length only in terms of ##y_{A}## and ##y_{B}##, right? I've been staring myself blind at this figure.
 
bookworm031 said:
I don't know why I find this so difficult, I feel very stupid right now. I should express the total length only in terms of ##y_{A}## and ##y_{B}##, right? I've been staring myself blind at this figure.
Let the lengths of the string sections, numbered from the left, be L1, L2, L3.
Allow also a constant Lf for the short fixed string supporting the upper pulley.
What equations can you write relating these to ##y_{A}## and ##y_{B}##?
Can you then find L1+L2+L3 in terms of ##y_{A}##, ##y_{B}, L_f##?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
15
Views
1K
  • · Replies 27 ·
Replies
27
Views
1K