MIT OCW 8.01 PS10.6: A Massive Pulley and a Block on an Incline

  • #1
giodude
30
1
Homework Statement
(Screen shot of question is posted below)

Consider a pulley of mass ##m_{p}## and radius ##R## that has a moment of inertia ##\frac{1}{2}m_{p}R^{2}##. The pulley is free to rotate about a frictionless pivot at its center. A massless string is wound around the pulley and the other end of the rope is attached to a block of mass ##m## that is initially held at rest on a frictionless inclined plane that is inclined at an angle ##\beta## with respect to the horizontal. The downward acceleration of gravity is ##g##. The block is released from rest.

How long does it take the block to move a distance ##d## down the inclined plane? Write your answer using some or all of the following: ##R##, ##m##, ##g##, ##d##, ##m_{p}##, ##\beta##.
Relevant Equations
$$\tau_{total} = I_{s} \alpha$$
$$I_{s} = \frac{1}{2}m_{p}R^{2}$$
$$a_{1} = \alpha_{1}R$$
Set up the force equations:
(1) ##mgsin(\beta) - T = ma_{1}##
(2) ##TR = I_{s}\alpha_{1}##

Multiply (1) by ##R## and isolate ##TR##:
##R(mgsin(\beta) - T) = R(ma_{1})##
##mRgsin(\beta) - TR = mRa_{1}##
##TR = mRgsin(\beta) - mRa_{1}##

Plug ##TR## into (2):
##TR = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = \frac{1}{2}m_{p}R^{2}\alpha_{1}##

Solve for the ##\alpha_{1}##:
##\alpha_{1} = \frac{mRgsin(\beta) - mRa_{1}}{\frac{1}{2}m_{p}R^{2}}##
(3) ##\alpha_{1} = 2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##

We now use (3) to solve for linear acceleration, ##a_{1}##:
##2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##
##m_{p}a_{1} + 2ma_{1} = 2mgsin(\beta)##
(4) ##a_{1} = \frac{2mgsin(\beta)}{m_{p} + 2m}##

Use (4) to solve the linear kinematics equation for t:
##d = \frac{1}{2} a_{1} t^{2}##
##t = \sqrt{\frac{2d}{a_{1}}}##
$$t = \sqrt{\frac{(m_{p} + 2m)d}{mgsin(\beta)}}$$

I wonder if this solution is correct given that the time to move distance ##d## is independent of the radius ##R## of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration. However, I'm not confident in this intuition so I'd love feedback on (a) if my solution is correct and (b) if my intuition explaining the solution is correct. Thank you in advance!
 

Attachments

  • Screen Shot 2023-10-03 at 9.49.33 PM.png
    Screen Shot 2023-10-03 at 9.49.33 PM.png
    17.8 KB · Views: 26
Last edited:
Physics news on Phys.org
  • #2
giodude said:
Homework Statement: (Screen shot of question is posted below)

Consider a pulley of mass ##m_{p}## and radius ##R## that has a moment of inertia ##\frac{1}{2}m_{p}R^{2}##. The pulley is free to rotate about a frictionless pivot at its center. A massless string is wound around the pulley and the other end of the rope is attached to a block of mass ##m## that is initially held at rest on a frictionless inclined plane that is inclined at an angle ##\beta## with respect to the horizontal. The downward acceleration of gravity is ##g##. The block is released from rest.

How long does it take the block to move a distance ##d## down the inclined plane? Write your answer using some or all of the following: ##R##, ##m##, ##g##, ##d##, ##m_{p}##, ##\beta##.
Relevant Equations: $$\tau_{total} = I_{s} \alpha$$
$$I_{s} = \frac{1}{2}m_{p}R^{2}$$
$$a_{1} = \alpha_{1}R$$

Set up the force equations:
(1) ##mgsin(\beta) - T = ma_{1}##
(2) ##TR = I_{s}\alpha_{1}##

Multiply (1) by ##R## and isolate ##TR##:
##R(mgsin(\beta) - T) = R(ma_{1})##
##mRgsin(\beta) - TR = mRa_{1}##
##TR = mRgsin(\beta) - mRa_{1}##

Plug ##TR## into (2):
##TR = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = I_{s}\alpha_{1}##
##mRgsin(\beta) - mRa_{1} = \frac{1}{2}m_{p}R^{2}\alpha_{1}##

Solve for the ##\alpha_{1}##:
##\alpha_{1} = \frac{mRgsin(\beta) - mRa_{1}}{\frac{1}{2}m_{p}R^{2}}##
(3) ##\alpha_{1} = 2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##

We now use (3) to solve for linear acceleration, ##a_{1}##:
##2\frac{mgsin(\beta) - ma_{1}}{m_{p}R} = \frac{a_{1}}{R}##
##m_{p}a_{1} + 2ma_{1} = 2mgsin(\beta)##
(4) ##a_{1} = \frac{2mgsin(\beta)}{m_{p} + 2m}##

Use (4) to solve the linear kinematics equation for t:
##d = \frac{1}{2} a_{1} t^{2}##
##t = \sqrt{\frac{2d}{a_{1}}}##
$$t = \sqrt{\frac{(m_{p} + 2m)d}{mgsin(\beta)}}$$

I wonder if this solution is correct given that the time to move distance ##d## is independent of the radius ##R## of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration. However, I'm not confident in this intuition so I'd love feedback on (a) if my solution is correct and (b) if my intuition explaining the solution is correct. Thank you in advance!
Your solution is correct. A bit inefficient solving for ##\alpha##. Just eliminate it as soon as possible by subbing ##\alpha = \frac{a}{R}## into (1) after subbing (2), And go right to ##a##.
 
  • #3
Thank you!
 
  • #4
giodude said:
I wonder if this solution is correct given that the time to move distance d is independent of the radius R of the pulley. The only intuitive possibility I could think of is a proportional relationship between torque required to achieve a certain angular acceleration and the size of the pulley. Since as the pulley increases as would the leverage and torque required to achieve same angular acceleration.
There's a bit more to it. The MoI rises as the square of R, while both the torque and the distance the mass moves per unit of rotation rise in proportion to R.
It may also seem intuitively wrong because you would expect the pulley's mass to increase too, but it is given as fixed.
 
  • #5
Oh, I think I see. Since the mass of the pulley is fixed, as the size of the pulley increase its really just a purely proportional change because the actual mass isn't increasing (or decreasing) whereas the time dependency is "focused" on the mass of the pulley rather than the shape of it. Which we see by ##m_{p}## being in the solution for time while ##R## is not.
 
  • #6
1696830241692.png
 

1. What is MIT OCW 8.01 PS10.6 all about?

MIT OCW 8.01 PS10.6 is a problem set from the physics course 8.01 at MIT OpenCourseWare. It involves a massive pulley and a block on an incline, and challenges students to apply their understanding of Newton's laws of motion and rotational dynamics.

2. What is the purpose of this problem set?

The purpose of this problem set is to assess students' understanding of concepts related to forces, motion, and rotational dynamics. It also helps students practice problem-solving skills and apply their knowledge to real-world scenarios.

3. How difficult is this problem set?

This problem set is considered to be of medium difficulty. It requires a solid understanding of basic physics principles and the ability to apply them to more complex scenarios. It may take some time and effort to solve, but it is a good opportunity for students to strengthen their skills.

4. Are there any resources available to help with this problem set?

Yes, MIT OCW provides lecture notes, video lectures, and other resources for the 8.01 course, which can be helpful in understanding the concepts and solving the problem set. Additionally, students can work with peers or seek assistance from their instructor if they need further clarification.

5. How can solving this problem set benefit students?

Solving this problem set can benefit students by reinforcing their understanding of physics concepts, improving their problem-solving skills, and preparing them for future physics courses or related fields of study. It also allows students to apply their knowledge to real-world scenarios, which can enhance their critical thinking abilities.

Similar threads

  • Introductory Physics Homework Help
Replies
15
Views
2K
  • Introductory Physics Homework Help
2
Replies
40
Views
2K
  • Introductory Physics Homework Help
Replies
10
Views
866
Replies
13
Views
899
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
29
Views
924
  • Introductory Physics Homework Help
Replies
4
Views
533
  • Introductory Physics Homework Help
Replies
1
Views
901
  • Introductory Physics Homework Help
Replies
10
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
635
Back
Top