Euler's Method to approximate a second order Differential Equation

Click For Summary
SUMMARY

The discussion focuses on using Euler's Method to approximate the solution of the second-order differential equation y'' + 4y' + 4y = 0 with initial conditions y(0) = 1 and y'(0) = 5. The exact solution is derived as y = e^(-2t) + (11/2)te^(-2t). Participants analyze the error in the Euler approximation over the interval from t = 0 to t = 5 with a step size of h = 0.05. It is concluded that while the error appears to increase after t = 3, this is due to the nature of Euler's Method and the accumulation of errors rather than a true increase in accuracy.

PREREQUISITES
  • Understanding of second-order differential equations
  • Familiarity with Euler's Method for numerical approximation
  • Basic knowledge of initial value problems
  • Proficiency in using Excel for plotting and data analysis
NEXT STEPS
  • Study the derivation and application of Euler's Method in numerical analysis
  • Learn about error analysis in numerical methods, focusing on error accumulation
  • Explore alternative numerical methods such as Runge-Kutta for solving differential equations
  • Investigate the impact of step size on the accuracy of numerical approximations
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with differential equations and numerical methods for solving initial value problems.

Yosty22
Messages
182
Reaction score
4

Homework Statement



y'' + 4y' + 4y = 0 ---- y(0) = 1, y'(0) = 5
Find the exact solution of the differential equation.
Use the exact solution and Euler's Method to compute Euler's Approximation for time t = 0 to t = 5 using a step h=0.05. Plot Euler's & Exact vs. t and plot Error vs. t. Then, answer the following question:

Is the error really increasing? That is, is Euler's method becoming less accurate as t increases?

Homework Equations



x1 = y
x2 = y'
x1' = y'
x2' = y'' = -4y' - 4y = -4x2 - 41
Euler's Method Equations assuming the substitutions made above:
x1(n+1) = x1(n) + hx/2(n)
x2(n+1) = x2(n) + h*(y''(n))

The Attempt at a Solution


[/B]
First, I solved the differential equation. Writing the characteristic equation r2 + 4r + 4 = 0, I solved for there to be a repeated root at r = -2. Therefore, the general solution is:
y= c1e-2t + c2te-2t
Taking a derivative to use the initial conditions:
y' = -c1/2 * e-2t + c2te-2t/2 + c2e-2t
Applying the initla conditions, I find c1 = 1 and c2 = 11/2
Therefore, the solution becomes:
e-2t + 11t/2 * e-2t

I then created an excel spreadsheet which calculate and then plots the exact solution vs. the eulerapproximation, giving me the graph:
upload_2014-10-6_22-9-44.png

then the error graph looks as follows:
upload_2014-10-6_22-10-51.png

So around time t = 3, it makes sense that the error would be about 0 due to how Euler approximations work. Since Euler Approximations use the tangent lines of the functions at a certain point to approximate the shape of the graph, the more and more linear the solution gets (such as from t --> infinity in this solution), the easier it is to approximate the solution because the slope of a horizontal line is 0. However, I have absolutely no idea what could be going on here that would cause the error to start increasing seemingly linearly after time t = 3 where the solution and the euler approximation is practically horizontal. I cannot fathom that a repeated root would cause this error. Does anyone have any idea what could be causing this?

Thanks in advance.
 
Physics news on Phys.org
Sorry, I thought I could be more a little more explicit about my response at the bottom. Since Euler Approximations go off of the slope of the tangent line of the exact solution and as t is increasing, the slope of the tangent line of the solution approaches 0, so the error should be approaching 0. So to answer the question, I would say that the error isn't really increasing despite what the graph displays. However, I'm not sure how to answer the part of the question asking to explicitly state what would cause it to appear as if it was increasing.
 
Yosty22 said:

Homework Statement



y'' + 4y' + 4y = 0 ---- y(0) = 1, y'(0) = 5
Find the exact solution of the differential equation.
Use the exact solution and Euler's Method to compute Euler's Approximation for time t = 0 to t = 5 using a step h=0.05. Plot Euler's & Exact vs. t and plot Error vs. t. Then, answer the following question:

Is the error really increasing? That is, is Euler's method becoming less accurate as t increases?

Homework Equations



x1 = y
x2 = y'
x1' = y'
x2' = y'' = -4y' - 4y = -4x2 - 41
Euler's Method Equations assuming the substitutions made above:
x1(n+1) = x1(n) + hx/2(n)
x2(n+1) = x2(n) + h*(y''(n))

The Attempt at a Solution


[/B]
First, I solved the differential equation. Writing the characteristic equation r2 + 4r + 4 = 0, I solved for there to be a repeated root at r = -2. Therefore, the general solution is:
y= c1e-2t + c2te-2t
Taking a derivative to use the initial conditions:
y' = -c1/2 * e-2t + c2te-2t/2 + c2e-2t

The derivative of e^{kt} is ke^{kt}, not \frac1k e^{kt}.
 
Yosty22 said:

Homework Statement



y'' + 4y' + 4y = 0 ---- y(0) = 1, y'(0) = 5
Find the exact solution of the differential equation.
Use the exact solution and Euler's Method to compute Euler's Approximation for time t = 0 to t = 5 using a step h=0.05. Plot Euler's & Exact vs. t and plot Error vs. t. Then, answer the following question:

Is the error really increasing? That is, is Euler's method becoming less accurate as t increases?

Homework Equations



x1 = y
x2 = y'
x1' = y'
x2' = y'' = -4y' - 4y = -4x2 - 41
Euler's Method Equations assuming the substitutions made above:
x1(n+1) = x1(n) + hx/2(n)
x2(n+1) = x2(n) + h*(y''(n))

The Attempt at a Solution


[/B]
First, I solved the differential equation. Writing the characteristic equation r2 + 4r + 4 = 0, I solved for there to be a repeated root at r = -2. Therefore, the general solution is:
y= c1e-2t + c2te-2t
Taking a derivative to use the initial conditions:
y' = -c1/2 * e-2t + c2te-2t/2 + c2e-2t
Applying the initla conditions, I find c1 = 1 and c2 = 11/2
Therefore, the solution becomes:
e-2t + 11t/2 * e-2t

I then created an excel spreadsheet which calculate and then plots the exact solution vs. the eulerapproximation, giving me the graph: View attachment 74110
then the error graph looks as follows:
View attachment 74111
So around time t = 3, it makes sense that the error would be about 0 due to how Euler approximations work. Since Euler Approximations use the tangent lines of the functions at a certain point to approximate the shape of the graph, the more and more linear the solution gets (such as from t --> infinity in this solution), the easier it is to approximate the solution because the slope of a horizontal line is 0. However, I have absolutely no idea what could be going on here that would cause the error to start increasing seemingly linearly after time t = 3 where the solution and the euler approximation is practically horizontal. I cannot fathom that a repeated root would cause this error. Does anyone have any idea what could be causing this?

Thanks in advance.

Your c1 and c2 are incorrect; you calculated y' incorrectly.

Anyway, even if you have the correct y(t) the errors can still grow (but they need not always do so). This can happen even in a simple case such as y' = a*y; see, eg., http://en.wikipedia.org/wiki/Euler_method , especially section 7. The point is that errors "accumulate", so that as the time increases you are applying a slightly incorrect step t -> t+h, starting from an incorrect y(t), and that can make y(t+h) even less correct. [Note: I said 'can', not 'will'.]
 
Last edited:
Also, I noted that your error graph is % error, or error/x, right? As x goes to zero, your small error will become very large relative to the zero value of the function. Try plotting true error to see how the method converges to the flat line at the end.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
5
Views
2K