MHB Evaluate (a²+b²+c²)/(ab+bc+ca)

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on evaluating the expression (a²+b²+c²)/(ab+bc+ca) under specific conditions involving real numbers a, b, and c. It states that a²/b + b²/c + c²/a equals a²/c + b²/a + c²/b, while the sum a/b + b/c + c/a does not equal a/c + b/a + c/b. Participants engage in exploring the implications of these equations to derive the value of the expression. The conversation highlights the mathematical relationships and potential simplifications that arise from the given conditions. The conclusion emphasizes the importance of these relationships in determining the final value.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.

Hello.

a^3c+b^3a+c^3b=a^3b+b^3c+c^3a

c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0

c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0

To divide (a-b):

c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0

(a^3-c^3)-(a-c)(a^2+ab+b^2)=0

To divide (a-c):

(a^2+ac+c^2)-(a^2+ab+b^2)=0

ac+c^2-ab-b^2=0

a(c-b)+(c^2-b^2)=0

To divide (c-b):

a+b+c=0

(a+b+c)^2=0

a^2+b^2+c^2=-2(ab+ac+bc)

\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2

Regards.
 
mente oscura said:
Hello.

a^3c+b^3a+c^3b=a^3b+b^3c+c^3a

c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0

c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0

To divide (a-b):

c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0

(a^3-c^3)-(a-c)(a^2+ab+b^2)=0

To divide (a-c):

(a^2+ac+c^2)-(a^2+ab+b^2)=0

ac+c^2-ab-b^2=0

a(c-b)+(c^2-b^2)=0

To divide (c-b):

a+b+c=0

(a+b+c)^2=0

a^2+b^2+c^2=-2(ab+ac+bc)

\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2

Regards.

Well done, mente oscura...and thanks for participating! :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K