MHB Evaluate (a²+b²+c²)/(ab+bc+ca)

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating the expression (a²+b²+c²)/(ab+bc+ca) under specific conditions involving real numbers a, b, and c. It states that a²/b + b²/c + c²/a equals a²/c + b²/a + c²/b, while the sum a/b + b/c + c/a does not equal a/c + b/a + c/b. Participants engage in exploring the implications of these equations to derive the value of the expression. The conversation highlights the mathematical relationships and potential simplifications that arise from the given conditions. The conclusion emphasizes the importance of these relationships in determining the final value.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c$ be real numbers such that

$\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}= \dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}$ and

$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ne \dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}$.

Evaluate $\dfrac{a^2+b^2+c^2}{ab+bc+ca}$.

Hello.

a^3c+b^3a+c^3b=a^3b+b^3c+c^3a

c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0

c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0

To divide (a-b):

c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0

(a^3-c^3)-(a-c)(a^2+ab+b^2)=0

To divide (a-c):

(a^2+ac+c^2)-(a^2+ab+b^2)=0

ac+c^2-ab-b^2=0

a(c-b)+(c^2-b^2)=0

To divide (c-b):

a+b+c=0

(a+b+c)^2=0

a^2+b^2+c^2=-2(ab+ac+bc)

\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2

Regards.
 
mente oscura said:
Hello.

a^3c+b^3a+c^3b=a^3b+b^3c+c^3a

c(a^3-b^3)+a(b^3-c^3)-b(a^3-c^3)=0

c(a^3-b^3)+a(b^3-c^3)+a(a^3-c^3)-a(a^3-c^3)-b(a^3-c^3)=0

To divide (a-b):

c(a^2+ab+b^2)+(a^3-c^3)-a(a^2+ab+b^2)=0

(a^3-c^3)-(a-c)(a^2+ab+b^2)=0

To divide (a-c):

(a^2+ac+c^2)-(a^2+ab+b^2)=0

ac+c^2-ab-b^2=0

a(c-b)+(c^2-b^2)=0

To divide (c-b):

a+b+c=0

(a+b+c)^2=0

a^2+b^2+c^2=-2(ab+ac+bc)

\dfrac{a^2+b^2+c^2}{ab+ac+bc}=-2

Regards.

Well done, mente oscura...and thanks for participating! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top