MHB Evaluate cos 2(theta) and sin 2(theta)

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Cos Sin
AI Thread Summary
To evaluate cos 2(theta) and sin 2(theta) for tan(theta) = -2√2, where theta is between 270 and 360 degrees, the double-angle identity for tangent is applied. The calculation leads to tan(2θ) = 4√2/7. Using the relationships for sin(2θ) and cos(2θ), it is determined that sin(2θ) = -4√2/9 and cos(2θ) = -7/9. The final answers confirm the initial calculations were correct.
Elissa89
Messages
52
Reaction score
0
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9
 
Mathematics news on Phys.org
Elissa89 said:
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9

I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$
 
MarkFL said:
I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$

Thank you! Looks like I had the right idea.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top