MHB Evaluate cos 2(theta) and sin 2(theta)

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Cos Sin
Click For Summary
To evaluate cos 2(theta) and sin 2(theta) for tan(theta) = -2√2, where theta is between 270 and 360 degrees, the double-angle identity for tangent is applied. The calculation leads to tan(2θ) = 4√2/7. Using the relationships for sin(2θ) and cos(2θ), it is determined that sin(2θ) = -4√2/9 and cos(2θ) = -7/9. The final answers confirm the initial calculations were correct.
Elissa89
Messages
52
Reaction score
0
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9
 
Mathematics news on Phys.org
Elissa89 said:
So my math professor gave us a study guide for the final but he's not aloud to give us the answers so I have no idea if my answers are correct or not. So if a few people could let me know what they got after trying this that would be great.

If tan(theta) = -2[sqrt(2)], and theta is between 270 degrees and 360 degrees, evaluate cos 2(theta) and sin 2(theta).

I got -7/9

I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$
 
MarkFL said:
I would begin with the double-angle identity for the tangent function:

$$\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Using the value given for \(\tan(\theta)\), we then have:

$$\tan(2\theta)=\frac{2(-2\sqrt{2})}{1-(-2\sqrt{2})^2}=\frac{4\sqrt{2}}{8-1}=\frac{4\sqrt{2}}{7}$$

At this point, we may assume:

$$\sin(2\theta)=4\sqrt{2}r$$

$$\cos(2\theta)=7r$$

And we must have:

$$\sin^2(2\theta)+\cos^2(2\theta)=1$$

Or:

$$32r^2+49r^2=1\implies r^2=\frac{1}{81}$$

Given that $$\sin(2\theta)<0$$, we then conclude:

$$r=-\frac{1}{9}$$

Hence:

$$\sin(2\theta)=-\frac{4\sqrt{2}}{9}$$

$$\cos(2\theta)=-\frac{7}{9}\quad\checkmark$$

Thank you! Looks like I had the right idea.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
7K
Replies
1
Views
1K
Replies
1
Views
2K