Evaluate f(91π/2002) + f(92π/2002) + .... + (910π/2002)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The evaluation of the sum $$f\left(\frac{91\pi}{2002}\right) + f\left(\frac{92\pi}{2002}\right) + \cdots + f\left(\frac{910\pi}{2002}\right)$$ where $$f(x) = \frac{1}{1+\tan^3 x}$$ results in a total of 410. This conclusion is reached by utilizing the identity $$f(x) + f\left(\frac{\pi}{2} - x\right) = 1$$, allowing for the pairing of terms from $$x = \frac{91\pi}{2002}$$ to $$x = \frac{500\pi}{2002}$$, yielding 410 pairs of 1.

PREREQUISITES
  • Understanding of trigonometric functions, specifically tangent and cotangent.
  • Familiarity with function evaluation and summation techniques.
  • Knowledge of mathematical identities involving complementary angles.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the properties of trigonometric functions and their transformations.
  • Learn about function identities and their applications in calculus.
  • Explore advanced summation techniques in mathematical analysis.
  • Investigate the behavior of $$\tan(x)$$ and $$\cot(x)$$ in various quadrants.
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced trigonometric identities and summation techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $$f(x)=\frac{1}{1+\tan^3 x}$$, evaluate $$f\left(\frac{91\pi}{2002} \right)+f\left(\frac{92\pi}{2002} \right)+\cdots+f\left(\frac{910\pi}{2002} \right)$$.
 
Physics news on Phys.org
Re: Evaluate f(91π/2002)+f(92π/2002)+...+(910π/2002)

anemone said:
If $$f(x)=\frac{1}{1+\tan^3 x}$$, evaluate $$f\left(\frac{91\pi}{2002} \right)+f\left(\frac{92\pi}{2002} \right)+\cdots+f\left(\frac{910\pi}{2002} \right)$$.

f(x) = cos ^3 x/( sin ^3 x + cos^3 x)
f(π/2 -x) = sin ^3 x / ( sin ^3 x + cos^3 x)

So f(x) + f(π/2-x) = 1

So f(91π/2002) + f(910π/2002) = 1 as 91π/2002 + 910π/2002 = π/2
Similarly upto
f(500π/2002) + f(501π/2002) =1

we have 410 pairs and sum = 410
 
Re: Evaluate f(91π/2002)+f(92π/2002)+...+(910π/2002)

Using the fact $\displaystyle f(x)+f\left(\frac{\pi}{2}-x\right) = \frac{1}{1+\tan^3 (x)}+\frac{1}{1+\cot^3(x)} = \frac{1+\tan^3 (x)}{1+\tan^3 (x)} = 1$

So we get $\displaystyle f(x)+f\left(\frac{\pi}{2}-x\right) = 1$

Now put $\displaystyle x = \frac{91\pi}{2002}$ to $\displaystyle x = \frac{500\pi}{2002}$

$\displaystyle \sum_{r=91}^{910} f\left(\frac{r\cdot\pi}{2002}\right) = 1+1+1+....+1)(410)$ -times

So $\displaystyle \sum_{r=91}^{910} f\left(\frac{r\cdot\pi}{2002}\right) = 410$
 
Last edited:

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
Replies
8
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K