Evaluate Quotient: $ab+cd \over ad+bc$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    quotient
Click For Summary

Discussion Overview

The discussion revolves around evaluating the expression $\dfrac{ab + cd}{ad + bc}$ given a system of equations involving positive real numbers $a, b, c,$ and $d$. The scope includes mathematical reasoning and exploration of potential values for the expression based on the provided conditions.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • Participants are tasked with finding all possible values of the expression $\dfrac{ab + cd}{ad + bc}$ under the constraints of the equations $a^2 + d^2 - ad = b^2 + c^2 + bc$ and $a^2 + b^2 = c^2 + d^2$.
  • One participant points out a potential mistake in the approach of another regarding the expression's evaluation in terms of sine and cosine functions.
  • Another participant acknowledges the hint provided and expresses gratitude for the solution shared by a different user.

Areas of Agreement / Disagreement

There appears to be disagreement regarding the correct approach to evaluating the expression, as one participant identifies a mistake in another's reasoning. The discussion remains unresolved as participants have not reached a consensus on the evaluation method.

Contextual Notes

Some assumptions regarding the relationships between the variables and their implications on the expression may be missing or not fully explored, leading to potential gaps in the reasoning presented.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.
 
Mathematics news on Phys.org
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.

Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
 
anemone said:
Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc---(1)$ and

$a^2+ b^2= c^2+ d^2--(2)$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}---(3)$.
my solution:
$A,B,C,D$ are four ponts on a circle with radius 1, $\overline{AC}$ is a diameter=2)
let:$\angle BCD=60^o,\overline{AB}=c,\overline{BC}=d,\overline{CD}=a,\overline{AD}=b$
then use law of cosine and pythagorean theorem ,it is easy to see that both (1) and (2) satisfy
for simple calculation we may let :$a=d=\sqrt 3,b=c=1$
we get (3)=$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
 
Last edited:
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is from 0 to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
if $x=0$ then $c=0$
but we are given $a,b,c,d>0$
if $t+x=60^o$ then the answer seemed always remain the same =$\dfrac{\sqrt 3}{2}$ (fixed)
I tried many pairs of angles $t$ and $x$ (with $t+x=60^o$ )
(I chceked the result using $"GSP"$)
the result should be :
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t -x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)=sin 60^o=\dfrac {\sqrt 3}{2}$
 
Last edited:
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$

Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...
 
anemone said:
Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...

Thanks anemone here is the solution

$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
correct till this
now for the second part which is corrected as below

$\frac{ab + cd}{ad + bc}= \frac{\cos t \sin t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t-x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)= \sin(60^\circ) = \frac{\sqrt3}{2}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
977
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K