Evaluate Quotient: $ab+cd \over ad+bc$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    quotient
Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $\dfrac{ab + cd}{ad + bc}$ given the constraints defined by the equations $a^2 + d^2 - ad = b^2 + c^2 + bc$ and $a^2 + b^2 = c^2 + d^2$. Participants identified a mistake in the approach to express the quotient in terms of sine and cosine functions. The correct evaluation leads to a definitive conclusion about the possible values of the expression under the given conditions.

PREREQUISITES
  • Understanding of algebraic manipulation and inequalities
  • Familiarity with trigonometric identities, specifically sine and cosine
  • Knowledge of positive real numbers and their properties
  • Experience with solving systems of equations
NEXT STEPS
  • Explore the application of trigonometric identities in algebraic expressions
  • Study the properties of positive real numbers in mathematical inequalities
  • Learn about the geometric interpretations of algebraic equations
  • Investigate similar quotient evaluations in mathematical analysis
USEFUL FOR

Mathematicians, students studying algebra and trigonometry, and anyone interested in solving complex equations involving positive real numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.
 
Mathematics news on Phys.org
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc$ and

$a^2+ b^2= c^2+ d^2$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}$.

Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
 
anemone said:
Hint:

This problem can easily be solved geometrically...(Wink)(Happy)
$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
anemone said:
Given positive real numbers $a,\,b,\,c,$ and $d$ that satisfy the system below:

$a^2+ d^2-ad = b^2+ c^2+ bc---(1)$ and

$a^2+ b^2= c^2+ d^2--(2)$.

Find all possible values of the expression $\dfrac{ab + cd}{ad + bc}---(3)$.
my solution:
$A,B,C,D$ are four ponts on a circle with radius 1, $\overline{AC}$ is a diameter=2)
let:$\angle BCD=60^o,\overline{AB}=c,\overline{BC}=d,\overline{CD}=a,\overline{AD}=b$
then use law of cosine and pythagorean theorem ,it is easy to see that both (1) and (2) satisfy
for simple calculation we may let :$a=d=\sqrt 3,b=c=1$
we get (3)=$\dfrac {\sqrt 3}{2}\approx 0.87$
 
Last edited:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
 
Last edited:
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is from 0 to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$
if $x=0$ then $c=0$
but we are given $a,b,c,d>0$
if $t+x=60^o$ then the answer seemed always remain the same =$\dfrac{\sqrt 3}{2}$ (fixed)
I tried many pairs of angles $t$ and $x$ (with $t+x=60^o$ )
(I chceked the result using $"GSP"$)
the result should be :
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t -x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)=sin 60^o=\dfrac {\sqrt 3}{2}$
 
Last edited:
kaliprasad said:
$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
$\frac{ab + cd}{ad + bc}= \frac{\sin t \cos t + \sin x \cos x}{\sin t \cos x + \cos t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\sin (t +x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\sin (t +x)}=\cos(t-x)$
from (3) we get $t =60^\circ-x$
so $\cos(t-x) = \cos(60^\circ- 2x)$ as as x is $> 0$ to $< 60^\circ$ we get the range of the value say A satisfying $1 >=A>\frac{1}{2}$

Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...
 
anemone said:
Hi kaliprasad! It took me a while to realize you have a mistake when you are to find the expression of the intended quotient in terms of sine and cosine functions...

Thanks anemone here is the solution

$a^2+ d^2-ad = b^2+ c^2+ bc=>a^2-b^2 = c^2 -d^2 + ad +bc \cdots(1)$ and
$a^2+ b^2= c^2+ d^2\cdots(2)$.
we can take $a = r\cos\,t, b= r\sin\,t, c = r\sin\, x, d= r\cos\,x$ to satisfy (2) so we get from (1)
$r^2(\cos^2 t - \sin ^2 t) = r^2(sin ^2 x - \cos ^2 x) + r^2(\cos\,t \cos\, x + \sin\,t \sin\, x)$
or $\cos 2t - \cos 2x = \cos(t-x)$
or $2\cos (t +x)\cos (t-x) = \cos(t-x)$
or $\cos (t +x) = \frac{1}{2}$
or $t+x = 60^\circ\cdots(3)$
correct till this
now for the second part which is corrected as below

$\frac{ab + cd}{ad + bc}= \frac{\cos t \sin t + \sin x \cos x}{\cos t \cos x + \sin t \sin x}$
$= \frac{\sin 2 t + \sin 2x}{2\cos (t-x)}$.
$= \frac{2(\sin (t + x)\cos(t-x)}{2\cos (t -x)}=\sin(t+x)= \sin(60^\circ) = \frac{\sqrt3}{2}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
924
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K