MHB Evaluate Trig Expressions....Part 1

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
The discussion focuses on evaluating trigonometric expressions, specifically sin 210° and sin (-210°), using a textbook method. For sin 210°, the reference angle is correctly identified as 30°, leading to the evaluation of sin 210° as -1/2 due to its position in Quadrant III. In contrast, for sin (-210°), the coterminal angle is 150°, with a reference angle of 30° in Quadrant II, resulting in sin (-210°) being 1/2. Participants inquire about formulas for determining reference and coterminal angles in trigonometry. The thread emphasizes the importance of understanding reference angles and their signs based on quadrant locations.
mathdad
Messages
1,280
Reaction score
0
Evaluate the trig expressions using the method shown in the textbook. Steps A through C show the method given in the textbook.

1. sin 210°

A. We are told to graph sin 210°. We are in Quadrant 3.

B. Find the reference angle R.

R = 270° - 210°

R = 60°

C. Evaluate sin R.

sin 60° = -sqrt{3}/2

Book's answer is -1/2.

2. sin (-210°)

A. We are told to graph sin (-210°).
We are in Quadrant 2.

B. Find the reference angle R.

R = -270° - (-210°)

R = -270° + 210°

R = -60

C. Evaluate sin R

sin (-60°) = sqrt{3}/2

Book's answer is 1/2.
 
Mathematics news on Phys.org
1. reference angle for 210 is 30 degrees, not 60. sin(30) = 1/2, but since the reference angle is in quad III where sine is negative, sin(210) = -1/2

2. -210 is coterminal with 150

reference angle is 30 in quad II where sine is positive

sin(30) = 1/2
 
skeeter said:
1. reference angle for 210 is 30 degrees, not 60. sin(30) = 1/2, but since the reference angle is in quad III where sine is negative, sin(210) = -1/2

2. -210 is coterminal with 150

reference angle is 30 in quad II where sine is positive

sin(30) = 1/2

Is there a formula(s) for finding the reference angle and coterminal angle in trigonometry?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads