Evaluate Trigonometric Expression Challenge

Click For Summary

Discussion Overview

The discussion revolves around evaluating the product of specific trigonometric functions, particularly $$\tan\frac{\pi}{13}\tan\frac{2\pi}{13}\tan\frac{3 \pi}{13}\tan\frac{4\pi}{13}\tan\frac{5\pi}{13} \tan \frac{6\pi}{13}$$. Participants explore various mathematical approaches and generalizations related to trigonometric products, including potential closed forms for sine and cosine products.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a detailed derivation showing that the product of the tangents equals $$\sqrt{13}$$, based on the roots of the equation $$\tan(13x) = 0$$.
  • Another participant questions whether the result can be generalized to $$\prod_{k=1}^{n} \tan \left( \frac{k \pi}{2n+1} \right) = \sqrt{2n+1}$$, suggesting it holds for all integers n.
  • Some participants discuss the possibility of evaluating $$\prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)$$ and $$\prod_{k=1}^{n} \cos \left( \frac{k \pi}{2n+1} \right)$$ in closed form, noting a relationship between sine and cosine products.
  • A participant provides a derivation for the product of sine functions, concluding it equals $$\frac{2n+1}{2^{2n}}$$, and relates it back to the original tangent product discussion.

Areas of Agreement / Disagreement

Participants express differing views on the generalization of the tangent product, with some supporting the idea while others have not yet reached a consensus. The evaluation of sine and cosine products also remains open to further exploration and discussion.

Contextual Notes

The discussion includes various mathematical assumptions and steps that are not fully resolved, particularly regarding the generalization of results and the specific conditions under which they hold.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\tan\frac{\pi}{13}\tan\frac{2\pi}{13}\tan\frac{3 \pi}{13}\tan\frac{4\pi}{13}\tan\frac{5\pi}{13} \tan \frac{6\pi}{13}$$.
 
Mathematics news on Phys.org
Re: Evaluate the expression of trigonometric

anemone said:
Evaluate $$\tan\frac{\pi}{13}\tan\frac{2\pi}{13}\tan\frac{3 \pi}{13}\tan\frac{4\pi}{13}\tan\frac{5\pi}{13} \tan \frac{6\pi}{13}$$.
[sp]The numbers $\frac{k\pi}{13}\ (0\leqslant k\leqslant 12)$ are the roots of the equation $\tan(13x) = 0.$ But $$\tan(13x) = \frac{\sin(13x)}{\cos(13x)} = \frac{{13\choose1}t - {13\choose3}t^3 + {13\choose5}t^5 - \ldots + t^{13}}{ 1 - {13\choose2}t^2 + {13\choose4}t^4 - \ldots + {13\choose12}t^{12}},$$ where $t = \tan x$ (as you can see by applying De Moivre's theorem to $(\cos x + i\sin x)^{13}$). The equation $\tan(13x) = 0$ will hold when the numerator of that fraction is $0$, in other words when $${13\choose1}t - {13\choose3}t^3 + {13\choose5}t^5 - \ldots + t^{13} = 0. \qquad(*)$$ Therefore the roots of (*) are $\tan\bigl(\frac{k\pi}{13}\bigr)\ (0\leqslant k\leqslant 12)$. One of the roots is $\tan 0 = 0$. Dividing by $t$ to get rid of that root, we are left with the equation $${13\choose1} - {13\choose3}t^2 + {13\choose5}t^4 - \ldots + t^{12} = 0, \qquad(**)$$ whose roots are $\tan\bigl(\frac{k\pi}{13}\bigr)\ (1\leqslant k\leqslant 12)$. The product of the roots of (**) is the constant term, $13$. But $\tan\bigl(\frac{(13-k)\pi}{13}\bigr) = -\tan\bigl(\frac{k\pi}{13}\bigr)$, so the product of the 12 roots is the square of the product of the first six roots. Therefore $$\tan\bigl(\tfrac{\pi}{13}\bigr) \tan\bigl(\tfrac{2\pi}{13}\bigr) \tan\bigl(\tfrac{3\pi}{13}\bigr) \tan\bigl(\tfrac{4\pi}{13}\bigr) \tan\bigl(\tfrac{5\pi}{13}\bigr) \tan\bigl(\tfrac{6\pi}{13}\bigr) = \sqrt{13}.$$[/sp]
 
Re: Evaluate the expression of trigonometric

@Opalg

Is there any reason we couldn't generalize and conclude $ \displaystyle \prod_{k=1}^{n} \tan \left( \frac{k \pi}{2n+1} \right) = \sqrt{2n+1}$ ?
 
Last edited:
Re: Evaluate the expression of trigonometric

Random Variable said:
Is there any reason we couldn't generalize and conclude $ \displaystyle \prod_{k=1}^{n} \tan \left( \frac{k \pi}{2n+1} \right) = \sqrt{2n+1}$ ?
That is correct. (Yes) It even works when $n=1$, to give $\tan(\pi/3) = \sqrt3$.
 
Can we also evaluate $ \displaystyle \prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)$ and $ \displaystyle \prod_{k=1}^{n} \cos \left( \frac{k \pi}{2n+1} \right) $ in closed form?

We know that $ \displaystyle \frac{\prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)}{\prod_{k=1}^{n} \cos \left( \frac{k \pi}{2n+1} \right)} = \sqrt{2n+1}$.
 
Random Variable said:
Can we also evaluate $ \displaystyle \prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)$ and $ \displaystyle \prod_{k=1}^{n} \cos \left( \frac{k \pi}{2n+1} \right) $ in closed form?

We know that $ \displaystyle \frac{\prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)}{\prod_{k=1}^{n} \cos \left( \frac{k \pi}{2n+1} \right)} = \sqrt{2n+1}$.
See http://www.mathhelpboards.com/f12/simplify-cos-cos-2a-cos-3a-cos-999a-if-%3D-2pi-1999-a-253/#post1517.
 
I came up with something for the direct evaluation of $ \displaystyle \prod_{k=1}^{n} \sin \left( \frac{k \pi}{2n+1} \right)$.

I'm first going to show that $ \displaystyle \prod_{k=1}^{2n} \Bigg( 1-\exp \left(\frac{2 \pi i k}{2n+1} \right) \Bigg)= (2n+1)$.

$ \displaystyle z^{2n+1}-1 = \prod_{k=0}^{2n} \Bigg( z- \exp \left( \frac{2 \pi i k}{2n+1} \right) \Bigg) = (z-1) \prod_{k=1}^{2n} \Bigg( z- \exp \left( \frac{2 \pi i k}{2n+1}\right) \Bigg)$

$ \displaystyle \implies \prod_{k=1}^{2n} \Bigg( z-\exp \left(\frac{2 \pi i k}{2n+1} \right) \Bigg) = \frac{z^{2n+1}-1}{z-1}$

$ \displaystyle \implies \prod_{k=1}^{2n} \Bigg( 1-\exp \left(\frac{2 \pi i k}{2n+1} \right) \Bigg) = \lim_{z \to 1} \frac{z^{2n+1}-1}{z-1} = \lim_{z \to 1} \frac{(2n+1) z^{2n}}{1} = 2n+1$ Using the fact $ \displaystyle \exp \left(\frac{\pi i k }{2n+1} \right) \sin \left(\frac{k \pi}{2n+1} \right) = \frac{i}{2} \Bigg( 1- \exp \left(\frac{2\pi i k}{2n+1} \right) \Bigg)$

$ \displaystyle \prod_{k=1}^{2n} \exp \left(\frac{\pi i k }{2n+1} \right) \sin \left(\frac{k \pi}{2n+1} \right) = \prod_{k=1}^{2n} \exp \left(\frac{\pi i k }{2n+1} \right) \prod_{k=1}^{2n} \sin \left(\frac{ k \pi}{2n+1} \right) $

$ \displaystyle = \Big[ \exp \left( \frac{\pi i}{2n+1} \right) \Big]^{n(2n+1)}\prod_{k=1}^{2n} \sin \left(\frac{k \pi}{2n+1} \right) = \displaystyle (-1)^{n} \prod_{k=1}^{2n} \sin \left(\frac{k \pi}{2n+1} \right)$

$ \displaystyle = \prod_{k=1}^{2n} \frac{i}{2} \Bigg( 1- \exp \left(\frac{2\pi i k}{2n+1} \right) \Bigg) = \frac{(-1)^{n}}{2^{2n}} (2n+1)$

$\displaystyle \implies \prod_{k=1}^{2n} \sin \left(\frac{k \pi}{2n+1} \right)= \frac{2n+1}{2^{2n}}$And $ \displaystyle \prod_{k=1}^{n} \sin \left(\frac{k \pi}{2n+1} \right) = \sqrt{ \prod_{k=1}^{2n} \sin \left(\frac{k \pi}{2n+1} \right)} = \frac{\sqrt{2n+1}}{2^{n}}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K