Evaluate Trigonometric Expression.

Click For Summary

Discussion Overview

The discussion revolves around evaluating the trigonometric expression $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$. Participants explore various approaches, including the application of general formulas and personal derivations, while addressing discrepancies in results.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants present a general formula for the product of cosines, suggesting it can simplify the evaluation of the expression.
  • One participant claims that applying the formula yields $$\frac{1}{64}$$ as the result, while another participant arrives at $$\frac{1}{32}$$, leading to confusion.
  • A participant expresses uncertainty about their earlier conclusion and questions the validity of their approach, acknowledging that the answer depends on the number of terms.
  • Another participant corrects their previous assertion about the result and aligns with the $$\frac{1}{64}$$ conclusion, admitting to a mistake in their earlier reasoning.
  • There is a suggestion that the formula's demonstration is straightforward, but the exact method is not universally agreed upon.
  • Some participants engage in clarifying the formula's parameters, indicating potential discrepancies in its application.

Areas of Agreement / Disagreement

Participants express differing views on the correct evaluation of the trigonometric expression, with some asserting $$\frac{1}{64}$$ and others initially claiming $$\frac{1}{32}$$. The discussion reflects ongoing uncertainty and debate regarding the application of the general formula.

Contextual Notes

There are unresolved aspects regarding the derivation and application of the general formula, as well as the assumptions underlying each participant's approach. The discussion highlights the complexity of evaluating the expression and the reliance on specific mathematical identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.

It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{32}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{32}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$

Hi chisigma, thanks for participating in this problem and your answer is of course correct and on the level, I didn't realize there was such a formula exists and that we could just apply it to this particular problem and get its answer so easily...
 
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem...

The demonstration of the formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... is 'easy' and, if I remember correctly, this result was known in the Middle Age...

Let's start from the well known formula...

$\displaystyle \sin 2x = 2\ \sin x \cos x$ (2)

Setting in (2) 4x instead of 2x we obtain...

$\displaystyle \sin 4 x = 2\ \sin 2 x\ \cos 2 x = 4\ \sin x\ \cos x\ \cos 2 x$ (3)

Proceeding in the same way we arrive to...

$\displaystyle \sin (2^{n+1} x) = 2^{n+1}\ \sin x\ \prod_{k=0}^{n} \cos (2^{k}\ x)$ (4)

Kind regards

$\chi$ $\sigma$
 
Last edited:
anemone said:
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.
Let:
$$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k$$
we have :
$$32\times2\times sin \left(\frac{\pi}{65}\right)\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right)k$$

$$16\times2\times sin \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$8\times2\times sin \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$4\times2\times sin \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$2\times 2sin \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$2\times sin \left(\frac{32\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$sin \left(\frac{64\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?
 
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]
 
Albert said:
Let:
$$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k$$

$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?

I am terribly sorry for misleading the readers who have read this thread for saying the answer $$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=\frac{1}{32}$$ is correct...

I didn't check my answer but I should be able to tell right away (from my approach) why this wasn't correct because the answer depends wholly on the number of terms that the cosine terms exist.

The correct answer for this trigonometric expression is $$\frac{1}{64}$$, as stated by Albert.

My solution:

Let $$P=cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$

and$$2^6Q=2^6(\sin \left(\frac{\pi}{65}\right)\cdot\sin \left(\frac{2\pi}{65}\right)\cdot\sin \left(\frac{4\pi}{65}\right)\cdot\sin \left(\frac{8\pi}{65}\right)\cdot\sin \left(\frac{16\pi}{65}\right)\cdot\sin \left(\frac{32\pi}{65}\right))$$

Multiplying P and $$2^6Q$$ together we obtain

$$2^6PQ=Q$$

$$P=\frac{1}{2^6}=\frac{1}{64}$$

and this approach is essentially the same as what Albert did in his solution...

I am truly sorry for saying the answer was correct without checking it and I promise I won't make this kind of mistake again and will practice the right forum manners on this site in the future.

Sorry...
 
Sudharaka said:
Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]

All right Sudharaka!... I have corrected my past post!... thank You very much!...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K