anemone said:
			
		
	
	
		
		
			Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.
		
		
	 
 Let:
$$cos \left(\frac{\pi}{65}\right)\cdot\cos  \left(\frac{2\pi}{65}\right)\cdot\cos  \left(\frac{4\pi}{65}\right)\cdot\cos  \left(\frac{8\pi}{65}\right)\cdot\cos  \left(\frac{16\pi}{65}\right)\cdot\cos  \left(\frac{32\pi}{65}\right)=k$$
we have :
$$32\times2\times sin  \left(\frac{\pi}{65}\right)\cos \left(\frac{\pi}{65}\right)\cdot\cos   \left(\frac{2\pi}{65}\right)\cdot\cos   \left(\frac{4\pi}{65}\right)\cdot\cos   \left(\frac{8\pi}{65}\right)\cdot\cos   \left(\frac{16\pi}{65}\right)\cdot\cos   \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)k$$
$$16\times2\times sin  \left(\frac{2\pi}{65}\right)\cdot\cos    \left(\frac{2\pi}{65}\right)\cdot\cos    \left(\frac{4\pi}{65}\right)\cdot\cos    \left(\frac{8\pi}{65}\right)\cdot\cos    \left(\frac{16\pi}{65}\right)\cdot\cos    \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)  k$$
$$8\times2\times sin  \left(\frac{4\pi}{65}\right)\cdot\cos     \left(\frac{4\pi}{65}\right)\cdot\cos     \left(\frac{8\pi}{65}\right)\cdot\cos     \left(\frac{16\pi}{65}\right)\cdot\cos     \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)   k$$
$$4\times2\times sin  \left(\frac{8\pi}{65}\right)\cdot\cos      \left(\frac{8\pi}{65}\right)\cdot\cos      \left(\frac{16\pi}{65}\right)\cdot\cos      \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)    k$$
$$2\times 2sin  \left(\frac{16\pi}{65}\right)\cdot\cos       \left(\frac{16\pi}{65}\right)\cdot\cos       \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)     k$$
$$2\times sin  \left(\frac{32\pi}{65}\right)\cdot\cos        \left(\frac{32\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)      k$$
$$sin  \left(\frac{64\pi}{65}\right)=64sin  \left(\frac{\pi}{65}\right)       k$$
$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?