MHB Evaluate Trigonometric Expression.

AI Thread Summary
The discussion centers on evaluating the product of cosines: $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$. A general formula is referenced, leading to the conclusion that the product equals $$\frac{1}{64}$$ when applying the formula correctly. There was initial confusion regarding the correct application of the formula, with some participants mistakenly suggesting the answer was $$\frac{1}{32}$$. Ultimately, the correct evaluation and understanding of the formula were clarified, confirming that the product indeed equals $$\frac{1}{64}$$. The discussion highlights the importance of verifying mathematical results and the collaborative nature of problem-solving in forums.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.

It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{32}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{32}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem... Kind regards $\chi$ $\sigma$

Hi chisigma, thanks for participating in this problem and your answer is of course correct and on the level, I didn't realize there was such a formula exists and that we could just apply it to this particular problem and get its answer so easily...
 
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... and setting in (1) $\displaystyle k=0,\ n=5,\ x=\frac{\pi}{65}$ Your product becomes...

$\displaystyle P = \frac{1}{64}\ \frac{\sin \frac{64\ \pi}{65}}{\sin \frac{\pi}{65}} = \frac{1}{64}$ (2)

Probably a more simple way to arrive to the result exists... how to demonstrate (1) is an extra problem...

The demonstration of the formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k+1}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

... is 'easy' and, if I remember correctly, this result was known in the Middle Age...

Let's start from the well known formula...

$\displaystyle \sin 2x = 2\ \sin x \cos x$ (2)

Setting in (2) 4x instead of 2x we obtain...

$\displaystyle \sin 4 x = 2\ \sin 2 x\ \cos 2 x = 4\ \sin x\ \cos x\ \cos 2 x$ (3)

Proceeding in the same way we arrive to...

$\displaystyle \sin (2^{n+1} x) = 2^{n+1}\ \sin x\ \prod_{k=0}^{n} \cos (2^{k}\ x)$ (4)

Kind regards

$\chi$ $\sigma$
 
Last edited:
anemone said:
Evaluate $$\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$.
Let:
$$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k$$
we have :
$$32\times2\times sin \left(\frac{\pi}{65}\right)\cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right)k$$

$$16\times2\times sin \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$8\times2\times sin \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$4\times2\times sin \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$2\times 2sin \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$2\times sin \left(\frac{32\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$$sin \left(\frac{64\pi}{65}\right)=64sin \left(\frac{\pi}{65}\right) k$$
$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?
 
chisigma said:
It exists the general formula...

$\displaystyle \prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}$ (1)

Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]
 
Albert said:
Let:
$$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=k$$

$\therefore k=\dfrac {1}{64}$
Am I wrong ? Why my answer is different from yours ?

I am terribly sorry for misleading the readers who have read this thread for saying the answer $$cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)=\frac{1}{32}$$ is correct...

I didn't check my answer but I should be able to tell right away (from my approach) why this wasn't correct because the answer depends wholly on the number of terms that the cosine terms exist.

The correct answer for this trigonometric expression is $$\frac{1}{64}$$, as stated by Albert.

My solution:

Let $$P=cos \left(\frac{\pi}{65}\right)\cdot\cos \left(\frac{2\pi}{65}\right)\cdot\cos \left(\frac{4\pi}{65}\right)\cdot\cos \left(\frac{8\pi}{65}\right)\cdot\cos \left(\frac{16\pi}{65}\right)\cdot\cos \left(\frac{32\pi}{65}\right)$$

and$$2^6Q=2^6(\sin \left(\frac{\pi}{65}\right)\cdot\sin \left(\frac{2\pi}{65}\right)\cdot\sin \left(\frac{4\pi}{65}\right)\cdot\sin \left(\frac{8\pi}{65}\right)\cdot\sin \left(\frac{16\pi}{65}\right)\cdot\sin \left(\frac{32\pi}{65}\right))$$

Multiplying P and $$2^6Q$$ together we obtain

$$2^6PQ=Q$$

$$P=\frac{1}{2^6}=\frac{1}{64}$$

and this approach is essentially the same as what Albert did in his solution...

I am truly sorry for saying the answer was correct without checking it and I promise I won't make this kind of mistake again and will practice the right forum manners on this site in the future.

Sorry...
 
Sudharaka said:
Hi chisigma, :)

I think this should be,

\[\prod_{j=k}^{n} \cos (2^{j}\ x) = \frac{1}{2^{n\color{red}{+1}-k}}\ \frac {\sin 2^{n+1}\ x}{\sin 2^{k}\ x}\]

All right Sudharaka!... I have corrected my past post!... thank You very much!...

Kind regards

$\chi$ $\sigma$
 

Similar threads

Back
Top