MHB Evaluate trigonometric expression

Click For Summary
The discussion revolves around evaluating the trigonometric expression $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$ without a calculator. Participants share various methods to approach the problem, highlighting the diversity of solutions in trigonometry. One user mentions an additional solution they encountered, suggesting that there are multiple effective strategies for tackling such expressions. The conversation emphasizes the collaborative nature of problem-solving in mathematics. Overall, the thread showcases the richness of mathematical exploration in evaluating trigonometric functions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.
 
Mathematics news on Phys.org
My solution:

Using the fact that \displaystyle \begin{align*} \sin{ (2X)} \equiv 2\sin{(X)}\cos{(X)} \end{align*} we can see that \displaystyle \begin{align*} \cos{(X)} \equiv \frac{\sin{(2X)}}{2\sin{(X)}} \end{align*}. From here

\displaystyle \begin{align*} \cos{(x)} &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \\ \cos{(2x)} &\equiv \frac{\sin{(4x)}}{2\sin{(2x)}} \\ \cos{(4x)} &\equiv \frac{\sin{(8x)}}{2\sin{(4x)}} \\ \vdots \\ \cos{\left( 2^j x \right) } &\equiv \frac{\sin{ \left( 2^{j + 1}x \right) }}{2\sin{ \left( 2^j x \right) }} \end{align*}

and so

\displaystyle \begin{align*} \cos{(x)} \cdot \cos{(2x)} \cdot \cos{(4x)} \cdot \dots \cdot \cos{ \left( 2^j x \right) } &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \cdot \frac{\sin{(4x)}}{2\sin{(2x)}} \cdot \frac{\sin{(8x)}}{2\sin{(4x)}} \cdot \dots \cdot \frac{\sin{ \left( 2^{j + 1}x \right) }}{2 \sin{ \left( 2^j x \right) }} \\ &\equiv \frac{ \sin{ \left( 2^{j + 1}x \right) } }{ 2^{j + 1} \sin{(x)} } \end{align*}

thereby giving the identity \displaystyle \begin{align*} \prod_{j = 0}^{k - 1}{\cos{\left( 2^j x \right) }} \equiv \frac{\sin{ \left( 2^k x \right) }}{2^k \sin{(x)}} \end{align*}, and setting \displaystyle \begin{align*} x = \frac{\pi}{7} \end{align*} we have

\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{7} \right) } \cos{ \left( \frac{2\pi}{7} \right) } \cos{ \left( \frac{4\pi}{7} \right) } &= \prod _{j = 0}^2{\cos{ \left( 2^j \cdot \frac{\pi}{7} \right) } } \\ &= \frac{ \sin{ \left( 2^3 \cdot \frac{\pi}{7} \right) }}{ 2^3 \sin{ \left( \frac{\pi}{7} \right) } } \\ &= \frac{\sin{\left( \frac{8\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{\sin{ \left( \pi + \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{-\sin{\left( \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= -\frac{1}{8} \end{align*}
 
Last edited by a moderator:
multiply by 8 $\sin(\pi/7) t$o get
$8\sin (\pi/7) cos (\pi/7)\ cos ( 2\pi/7) \cos(4\pi/7)$
=$4\ sin (2\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)$
=$2 \sin (4\pi/7) \cos(4\pi/7)$
=$ \sin (8\pi/7)$
=$ -\sin (\pi/7) $
hence $ \cos (\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)= -1/8$
 
Last edited by a moderator:
anemone said:
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.

Using the substitution $\cos x = \frac 1 2 \left(e^{ix} + e^{-ix}\right)$, we find:

$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7}
=\frac 1 8 \left(e^{i\pi/7} + e^{-i\pi/7}\right) \left(e^{i 2\pi/7} + e^{-i 2\pi/7}\right)
\left(e^{i 4\pi/7} + e^{-i 4\pi/7}\right)$$

Define $z=e^{i\pi/7}$ and this yields:

$$\frac 1 8 (z+z^{-1})(z^2+z^{-2})(z^4+z^{-4})
=\frac 1 8 (z^{-7} + z^{-5} + z^{-3} + z^{-1} + z^{1} + z^{3} + z^{5} + z^{7})$$
Using the formula for a geometric series, this rolls up into:
$$\frac 1 8 z^{-7} \frac{1-(z^2)^8}{1-z^2}$$

From the definition of $z$ it follows that $z^7 = -1$.
Consequently the expression simplifies to just $$-\frac 1 8$$.

In other words:
$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7} = -\frac 1 8$$
 
Last edited:
Hey Prove It, kaliprasad and I like Serena,

Thank you so much for participating! The solutions provided by the three of you suggest that there are many ways to tackle a math problem, and this is especially true in trigonometric problem!:)

Another solution that I saw somewhere which I think is good to share it here:

$\begin{align*}\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}&=\dfrac{\left(2\sin \dfrac{\pi}{7}\cos \dfrac{\pi}{7} \right) \left(2\sin \dfrac{2\pi}{7}\cos \dfrac{2\pi}{7} \right) \left(2\sin \dfrac{4\pi}{7}\cos \dfrac{4\pi}{7} \right)}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \dfrac{2 \pi}{7}\sin \dfrac{4\pi}{7}\sin \dfrac{8\pi}{7}}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \left(\pi+\dfrac{\pi}{7} \right)}{8\sin \dfrac{\pi}{7}}\\&=-\dfrac{1}{8}\end{align*}$
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
988
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K