MHB Evaluate trigonometric expression

AI Thread Summary
The discussion revolves around evaluating the trigonometric expression $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$ without a calculator. Participants share various methods to approach the problem, highlighting the diversity of solutions in trigonometry. One user mentions an additional solution they encountered, suggesting that there are multiple effective strategies for tackling such expressions. The conversation emphasizes the collaborative nature of problem-solving in mathematics. Overall, the thread showcases the richness of mathematical exploration in evaluating trigonometric functions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.
 
Mathematics news on Phys.org
My solution:

Using the fact that \displaystyle \begin{align*} \sin{ (2X)} \equiv 2\sin{(X)}\cos{(X)} \end{align*} we can see that \displaystyle \begin{align*} \cos{(X)} \equiv \frac{\sin{(2X)}}{2\sin{(X)}} \end{align*}. From here

\displaystyle \begin{align*} \cos{(x)} &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \\ \cos{(2x)} &\equiv \frac{\sin{(4x)}}{2\sin{(2x)}} \\ \cos{(4x)} &\equiv \frac{\sin{(8x)}}{2\sin{(4x)}} \\ \vdots \\ \cos{\left( 2^j x \right) } &\equiv \frac{\sin{ \left( 2^{j + 1}x \right) }}{2\sin{ \left( 2^j x \right) }} \end{align*}

and so

\displaystyle \begin{align*} \cos{(x)} \cdot \cos{(2x)} \cdot \cos{(4x)} \cdot \dots \cdot \cos{ \left( 2^j x \right) } &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \cdot \frac{\sin{(4x)}}{2\sin{(2x)}} \cdot \frac{\sin{(8x)}}{2\sin{(4x)}} \cdot \dots \cdot \frac{\sin{ \left( 2^{j + 1}x \right) }}{2 \sin{ \left( 2^j x \right) }} \\ &\equiv \frac{ \sin{ \left( 2^{j + 1}x \right) } }{ 2^{j + 1} \sin{(x)} } \end{align*}

thereby giving the identity \displaystyle \begin{align*} \prod_{j = 0}^{k - 1}{\cos{\left( 2^j x \right) }} \equiv \frac{\sin{ \left( 2^k x \right) }}{2^k \sin{(x)}} \end{align*}, and setting \displaystyle \begin{align*} x = \frac{\pi}{7} \end{align*} we have

\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{7} \right) } \cos{ \left( \frac{2\pi}{7} \right) } \cos{ \left( \frac{4\pi}{7} \right) } &= \prod _{j = 0}^2{\cos{ \left( 2^j \cdot \frac{\pi}{7} \right) } } \\ &= \frac{ \sin{ \left( 2^3 \cdot \frac{\pi}{7} \right) }}{ 2^3 \sin{ \left( \frac{\pi}{7} \right) } } \\ &= \frac{\sin{\left( \frac{8\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{\sin{ \left( \pi + \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{-\sin{\left( \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= -\frac{1}{8} \end{align*}
 
Last edited by a moderator:
multiply by 8 $\sin(\pi/7) t$o get
$8\sin (\pi/7) cos (\pi/7)\ cos ( 2\pi/7) \cos(4\pi/7)$
=$4\ sin (2\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)$
=$2 \sin (4\pi/7) \cos(4\pi/7)$
=$ \sin (8\pi/7)$
=$ -\sin (\pi/7) $
hence $ \cos (\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)= -1/8$
 
Last edited by a moderator:
anemone said:
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.

Using the substitution $\cos x = \frac 1 2 \left(e^{ix} + e^{-ix}\right)$, we find:

$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7}
=\frac 1 8 \left(e^{i\pi/7} + e^{-i\pi/7}\right) \left(e^{i 2\pi/7} + e^{-i 2\pi/7}\right)
\left(e^{i 4\pi/7} + e^{-i 4\pi/7}\right)$$

Define $z=e^{i\pi/7}$ and this yields:

$$\frac 1 8 (z+z^{-1})(z^2+z^{-2})(z^4+z^{-4})
=\frac 1 8 (z^{-7} + z^{-5} + z^{-3} + z^{-1} + z^{1} + z^{3} + z^{5} + z^{7})$$
Using the formula for a geometric series, this rolls up into:
$$\frac 1 8 z^{-7} \frac{1-(z^2)^8}{1-z^2}$$

From the definition of $z$ it follows that $z^7 = -1$.
Consequently the expression simplifies to just $$-\frac 1 8$$.

In other words:
$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7} = -\frac 1 8$$
 
Last edited:
Hey Prove It, kaliprasad and I like Serena,

Thank you so much for participating! The solutions provided by the three of you suggest that there are many ways to tackle a math problem, and this is especially true in trigonometric problem!:)

Another solution that I saw somewhere which I think is good to share it here:

$\begin{align*}\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}&=\dfrac{\left(2\sin \dfrac{\pi}{7}\cos \dfrac{\pi}{7} \right) \left(2\sin \dfrac{2\pi}{7}\cos \dfrac{2\pi}{7} \right) \left(2\sin \dfrac{4\pi}{7}\cos \dfrac{4\pi}{7} \right)}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \dfrac{2 \pi}{7}\sin \dfrac{4\pi}{7}\sin \dfrac{8\pi}{7}}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \left(\pi+\dfrac{\pi}{7} \right)}{8\sin \dfrac{\pi}{7}}\\&=-\dfrac{1}{8}\end{align*}$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top