MHB Evaluate trigonometric expression

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.
 
Mathematics news on Phys.org
My solution:

Using the fact that \displaystyle \begin{align*} \sin{ (2X)} \equiv 2\sin{(X)}\cos{(X)} \end{align*} we can see that \displaystyle \begin{align*} \cos{(X)} \equiv \frac{\sin{(2X)}}{2\sin{(X)}} \end{align*}. From here

\displaystyle \begin{align*} \cos{(x)} &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \\ \cos{(2x)} &\equiv \frac{\sin{(4x)}}{2\sin{(2x)}} \\ \cos{(4x)} &\equiv \frac{\sin{(8x)}}{2\sin{(4x)}} \\ \vdots \\ \cos{\left( 2^j x \right) } &\equiv \frac{\sin{ \left( 2^{j + 1}x \right) }}{2\sin{ \left( 2^j x \right) }} \end{align*}

and so

\displaystyle \begin{align*} \cos{(x)} \cdot \cos{(2x)} \cdot \cos{(4x)} \cdot \dots \cdot \cos{ \left( 2^j x \right) } &\equiv \frac{\sin{(2x)}}{2\sin{(x)}} \cdot \frac{\sin{(4x)}}{2\sin{(2x)}} \cdot \frac{\sin{(8x)}}{2\sin{(4x)}} \cdot \dots \cdot \frac{\sin{ \left( 2^{j + 1}x \right) }}{2 \sin{ \left( 2^j x \right) }} \\ &\equiv \frac{ \sin{ \left( 2^{j + 1}x \right) } }{ 2^{j + 1} \sin{(x)} } \end{align*}

thereby giving the identity \displaystyle \begin{align*} \prod_{j = 0}^{k - 1}{\cos{\left( 2^j x \right) }} \equiv \frac{\sin{ \left( 2^k x \right) }}{2^k \sin{(x)}} \end{align*}, and setting \displaystyle \begin{align*} x = \frac{\pi}{7} \end{align*} we have

\displaystyle \begin{align*} \cos{ \left( \frac{\pi}{7} \right) } \cos{ \left( \frac{2\pi}{7} \right) } \cos{ \left( \frac{4\pi}{7} \right) } &= \prod _{j = 0}^2{\cos{ \left( 2^j \cdot \frac{\pi}{7} \right) } } \\ &= \frac{ \sin{ \left( 2^3 \cdot \frac{\pi}{7} \right) }}{ 2^3 \sin{ \left( \frac{\pi}{7} \right) } } \\ &= \frac{\sin{\left( \frac{8\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{\sin{ \left( \pi + \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= \frac{-\sin{\left( \frac{\pi}{7} \right) }}{8\sin{ \left( \frac{\pi}{7} \right) }} \\ &= -\frac{1}{8} \end{align*}
 
Last edited by a moderator:
multiply by 8 $\sin(\pi/7) t$o get
$8\sin (\pi/7) cos (\pi/7)\ cos ( 2\pi/7) \cos(4\pi/7)$
=$4\ sin (2\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)$
=$2 \sin (4\pi/7) \cos(4\pi/7)$
=$ \sin (8\pi/7)$
=$ -\sin (\pi/7) $
hence $ \cos (\pi/7) \cos ( 2\pi/7) \cos(4\pi/7)= -1/8$
 
Last edited by a moderator:
anemone said:
Without the help of calculator, evaluate $\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}$.

Using the substitution $\cos x = \frac 1 2 \left(e^{ix} + e^{-ix}\right)$, we find:

$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7}
=\frac 1 8 \left(e^{i\pi/7} + e^{-i\pi/7}\right) \left(e^{i 2\pi/7} + e^{-i 2\pi/7}\right)
\left(e^{i 4\pi/7} + e^{-i 4\pi/7}\right)$$

Define $z=e^{i\pi/7}$ and this yields:

$$\frac 1 8 (z+z^{-1})(z^2+z^{-2})(z^4+z^{-4})
=\frac 1 8 (z^{-7} + z^{-5} + z^{-3} + z^{-1} + z^{1} + z^{3} + z^{5} + z^{7})$$
Using the formula for a geometric series, this rolls up into:
$$\frac 1 8 z^{-7} \frac{1-(z^2)^8}{1-z^2}$$

From the definition of $z$ it follows that $z^7 = -1$.
Consequently the expression simplifies to just $$-\frac 1 8$$.

In other words:
$$\cos \frac{\pi}{7}\cos \frac{2\pi}{7}\cos \frac{4\pi}{7} = -\frac 1 8$$
 
Last edited:
Hey Prove It, kaliprasad and I like Serena,

Thank you so much for participating! The solutions provided by the three of you suggest that there are many ways to tackle a math problem, and this is especially true in trigonometric problem!:)

Another solution that I saw somewhere which I think is good to share it here:

$\begin{align*}\cos \dfrac{\pi}{7}\cos \dfrac{2\pi}{7}\cos \dfrac{4\pi}{7}&=\dfrac{\left(2\sin \dfrac{\pi}{7}\cos \dfrac{\pi}{7} \right) \left(2\sin \dfrac{2\pi}{7}\cos \dfrac{2\pi}{7} \right) \left(2\sin \dfrac{4\pi}{7}\cos \dfrac{4\pi}{7} \right)}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \dfrac{2 \pi}{7}\sin \dfrac{4\pi}{7}\sin \dfrac{8\pi}{7}}{8\sin \dfrac{\pi}{7}\sin \dfrac{2\pi}{7}\sin \dfrac{4\pi}{7}}\\&=\dfrac{\sin \left(\pi+\dfrac{\pi}{7} \right)}{8\sin \dfrac{\pi}{7}}\\&=-\dfrac{1}{8}\end{align*}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top