Evaluate (without a calculator) the product: f(r1+1)⋅f(r2+1)⋅f(r3+1).

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Calculator Product
Click For Summary
SUMMARY

The discussion centers on evaluating the product of the function \( f(r_1+1) \cdot f(r_2+1) \cdot f(r_3+1) \) for the cubic function \( f(x) = x^3 + 20x - 17 \), where \( r_1, r_2, \) and \( r_3 \) are the roots. Participants express appreciation for correct solutions and share alternative approaches to the problem. The conversation emphasizes the importance of accuracy in mathematical evaluations and the use of spoiler tags for problem-solving discussions.

PREREQUISITES
  • Understanding of cubic functions and their properties
  • Knowledge of polynomial root evaluation
  • Familiarity with mathematical notation and expressions
  • Experience with spoiler tags in online discussions
NEXT STEPS
  • Explore the properties of cubic functions and their roots
  • Learn about Vieta's formulas for polynomial equations
  • Study techniques for evaluating polynomial expressions at specific points
  • Review best practices for online mathematical discussions, including the use of spoiler tags
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in problem-solving techniques related to polynomial functions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given the function:

$$f(x) = x^3+20x-17.$$

Denote the roots of the function: $r_1,r_2$ and $r_3$.

Evaluate (without a calculator) the product: $f(r_1+1) \cdot f(r_2+1) \cdot f(r_3+1)$.
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
Given the function:

$$f(x) = x^3+20x-17.$$

Denote the roots of the function: $r_1,r_2$ and $r_3$.

Evaluate (without a calculator) the product: $f(r_1+1) \cdot f(r_2+1) \cdot f(r_3+1)$.
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}$
$=\dfrac{27000+52920*20-74088*17}{17-20-1}=\dfrac{-174096}{-4}=43524$
 
Last edited:
Albert said:
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}=572724$

I am unable to derive /understand (4)
 
kaliprasad said:
I am unable to derive /understand (4)
$f(x)=x^3+20x-17$
$f(r)=r^3+20r-17=0---(1)$ ($r$ is a root of $f$)
$f(r+1)=(r+1)^3+20(r+1)-17=3r^2+3r+21$
from $(1):$ $r^3-1=(r-1)(r^2+r+1)=16-20r$
$r^2+r+1=\dfrac {16-20r}{r-1}$
$\therefore 3r^2+3r+21=\dfrac {30-42r}{r-1}$
 
Albert said:
my solution:
for $r_1^3+20r_1-17=r_2^3+20r_2-17=r_3^3+20r_3-17=0$
Using Vieta's formulas
$r_1+r_2+r_3=0---(1)$
$r_1r_2+r_2r_3+r_3r_1=20---(2)$
$r_1r_2r_3=17---(3)$
$f(r_1+1)=(r_1+1)^3+20(r_1+1)-17=\dfrac {30-42r_1}{r_1-1}---(4)$
$f(r_2+1)=(r_2+1)^3+20(r_2+1)-17=\dfrac {30-42r_2}{r_2-1}---(5)$
$f(r_3+1)=(r_3+1)^3+20(r_3+1)-17=\dfrac {30-42r_3}{r_3-1}---(6)$
$(4)\times(5)\times(6)=$
$\dfrac{27000 - 37800(r_1+r_2+r_3)+ 52920(r_1r_2+r_2r_3+r_3r_1) - 74088(r_1r_2r_3)}{(r_1r_2r_3) -(r_1r_2+r_2r_3+r_3r_1 )+ (r_1 +r_2+r_3 - 1)}=572724$

Hi, Albert!Thankyou very much for your interesting approach, but ...

- there must be a miscalculation somewhere. :( The correct end value is $43524$.
 
lfdahl said:
Hi, Albert!Thankyou very much for your interesting approach, but ...

- there must be a miscalculation somewhere. :( The correct end value is $43524$.
yes a miscalculation found the answer is 43524
the solution has been edited
what a shame ! my poor calculation
 
Last edited by a moderator:
Thankyou, Albert! - for your correct solution!
Please don´t bother because of the previous small miscalculation.
You are indeed a master in solving challenges and puzzles!:cool:

An alternative solution:

First we note, that $f(r_1+1) = 3r_1^2+3r_1+21$, since $r_1^3+20r_1-17 = 0$.

The quadratic polynomium has the roots:

\[3\left ( r_1^2+r_1+7 \right ) =3 \left ( \frac{-1+i3\sqrt{3}}{2}-r_1 \right )\cdot \left (\frac{-1-i3\sqrt{3}}{2}-r_1 \right ) = 3(\alpha -r_1)(\beta -r_1).\]

Now,
\[f(\alpha )=(\alpha-r_1)( \alpha-r_2)( \alpha-r_3 )\\\\
f(\beta )=(\beta-r_1)( \beta-r_2)( \beta-r_3 ) \\\\ \Rightarrow 3^3\cdot f(\alpha )\cdot f(\beta )=3(\alpha -r_1)(\beta -r_1) \cdot 3(\alpha -r_2)(\beta -r_2) \cdot 3(\alpha -r_3)(\beta -r_3)
\\\\=f(r_1+1)f(r_2+1)f(r_3+1)\]

\[f(\alpha )= -17+i 21\sqrt{3}, \: \: f(\beta )= -17-i 21\sqrt{3}\]

Thus, we get:

$ f(r_1+1)f(r_2+1)f(r_3+1)= 27f(\alpha ) f(\beta )= 27(17^2+3\cdot 21^2) = 43524$.
 
Last edited:
lfdahl said:
Thankyou, Albert! - for your correct solution!
Please don´t bother because of the previous small miscalculation.
You are indeed a master in solving challenges and puzzles!:cool:

An alternative solution:

First we note, that $f(r_1+1) = 3r_1^2+3r_1+21$, since $r_1^3+20r_1-17 = 0$.

The quadratic polynomium has the roots:

\[3\left ( r_1^2+r_1+7 \right ) =3 \left ( \frac{-1+i3\sqrt{3}}{2}-r_1 \right )\cdot \left (\frac{-1-i3\sqrt{3}}{2}-r_1 \right ) = 3(\alpha -r_1)(\beta -r_1).\]

Now,
\[f(\alpha )=(\alpha-r_1)( \alpha-r_2)( \alpha-r_3 )\\\\
f(\beta )=(\beta-r_1)( \beta-r_2)( \beta-r_3 ) \\\\ \Rightarrow 3^3\cdot f(\alpha )\cdot f(\beta )=3(\alpha -r_1)(\beta -r_1) \cdot 3(\alpha -r_2)(\beta -r_2) \cdot 3(\alpha -r_3)(\beta -r_3)
\\\\=f(r_1+1)f(r_2+1)f(r_3+1)\]

\[f(\alpha )= -17+i 21\sqrt{3}, \: \: f(\beta )= -17-i 21\sqrt{3}\]

Thus, we get:

$ f(r_1+1)f(r_2+1)f(r_3+1)= 27f(\alpha ) f(\beta )= 27(17^2+3\cdot 21^2) = 43524$.
to find the value of $f(\alpha)=-17+21\sqrt 3 i$ and $f(\beta)=-17-21\sqrt 3i$ seemed time-consuming
do you have a better way to get them ?
 
Last edited:
Albert said:
to find the value of $f(\alpha)=-17+21\sqrt 3 i$ and $f(\beta)=-17-21\sqrt 3i$ seemed time-consuming
do you have a better way to get them ?

I´m afraid, no. Maybe, someone in the forum knows a less laborious way to follow?
The conversion to polar notation doesn´t make things better:

\[\frac{-1+i3\sqrt{3}}{2} \approx \sqrt{7}\cdot e^{i100.893^{\circ}}\]
:confused:
 
Last edited:
  • #10
Hi guys. Just a friendly reminder to use spoiler tags. Thanks. :D
 
  • #11
greg1313 said:
Hi guys. Just a friendly reminder to use spoiler tags. Thanks. :D

Thankyou, greg1313, for the friendly reminder! :o
I will take precaution in future challenge & puzzle correspondence.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K